期刊文献+

Hyperbolic Monge-Ampère Equation

Hyperbolic Monge-Ampère Equation
下载PDF
导出
摘要 In this paper, based on the Lie symmetry method, the symmetry group of a hyperbolic Monge-Ampère equation is obtained first, then the one-dimensional optimal system of the obtained symmetries is given, and finally the group-invariant solutions are investigated. In this paper, based on the Lie symmetry method, the symmetry group of a hyperbolic Monge-Ampère equation is obtained first, then the one-dimensional optimal system of the obtained symmetries is given, and finally the group-invariant solutions are investigated.
作者 Fang Gao Fang Gao(School of Mathematical Sciences, Liaocheng University, Liaocheng, China)
出处 《Journal of Applied Mathematics and Physics》 2020年第12期2971-2980,共10页 应用数学与应用物理(英文)
关键词 Hyperbolic Monge-Ampère Equation Lie Symmetry One-Dimensional Optimal System Group-Invariant Solutions Hyperbolic Monge-Ampère Equation Lie Symmetry One-Dimensional Optimal System Group-Invariant Solutions
  • 相关文献

参考文献2

二级参考文献3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部