摘要
In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov and Svaiter. The obtained method has low-complexity property and converges globally. Furthermore, this method has also been extended to solve the sparse signal reconstruction in compressive sensing. Numerical experiments illustrate the efficiency of the given method and show that such non-monotone method is suitable for some large scale problems.
In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov and Svaiter. The obtained method has low-complexity property and converges globally. Furthermore, this method has also been extended to solve the sparse signal reconstruction in compressive sensing. Numerical experiments illustrate the efficiency of the given method and show that such non-monotone method is suitable for some large scale problems.
作者
Yaping Hu
Yujie Wang
Yaping Hu;Yujie Wang(College of Science, Tianjin University of Science and Technology, Tianjin, China)