期刊文献+

Lateral Shear Layer and Its Velocity Distribution of Flow in Rectangular Open Channels 被引量:2

Lateral Shear Layer and Its Velocity Distribution of Flow in Rectangular Open Channels
下载PDF
导出
摘要 The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01). The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).
作者 Xiaonan Tang
出处 《Journal of Applied Mathematics and Physics》 2019年第4期829-840,共12页 应用数学与应用物理(英文)
关键词 LATERAL SHEAR Layer Velocity Distribution Analytical Model LATERAL WIDTH Open Channel FLOW SECONDARY FLOW Lateral Shear Layer Velocity Distribution Analytical Model Lateral Width Open Channel Flow Secondary Flow
  • 相关文献

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部