期刊文献+

Chaos Control in a Discrete Ecological System

Chaos Control in a Discrete Ecological System
下载PDF
导出
摘要 In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical analysis. In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifurcations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical analysis.
出处 《International Journal of Modern Nonlinear Theory and Application》 2012年第3期81-83,共3页 现代非线性理论与应用(英文)
关键词 CHAOS CONTROL DISCRETE ECOLOGICAL System NUMERICAL SIMULATION Chaos Control Discrete Ecological System Numerical Simulation
  • 相关文献

参考文献2

二级参考文献25

  • 1Huo H F, IA W T. Stable periodic solution of the discrete periodic Leslie- Gower predator-prey model [ J ]. Math Comput Model, 2004,40:261 -9. 被引量:1
  • 2Yang X. Uniform persistence and periodic solutions for a discrete predator -prey system with delays [ J]. J Math Anal Appl, 2006, 316:161-77. 被引量:1
  • 3Liu X 1, Xiao D M. Complex dynamic behaviors of a discrete-time predator-prey system[ J]. Chaos. Solitons & Fractals, 2007, 32 : 80 - 94. 被引量:1
  • 4Agiza H N, Elabbssy E M, E L - MetwaUy H, Elsadany A A. Chaotic dynamics of a discrete prey - predator model with Holling type//[J]. Nonlinear Anal Real World Appl, 2009,10:116 -29. 被引量:1
  • 5Zhang Y, Zhang Q L, Zhao L C, Yang C Y. Dynamical behavior and chaos control in a discrete function response model[ J ]. Chaos, Solltons & Fractals, 2007,34:1318-27. 被引量:1
  • 6Jing Z J, Yang J P. Bifurcation and chaos in discrete -time predator-prey system[ J]. Chaos, Solitons & Fractals, 2006,27 : 259 - 77. 被引量:1
  • 7Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[ M ]. Berlin; Springer- Verlag; 1990. 被引量:1
  • 8Beddington J R, Free C A, Lawton J H. Dynamic complexity in predator-prey models framed in difference equations[J].Nature, 1975,255:58-60. 被引量:1
  • 9Chen FD.Permanence and global attractivity of a discrete multispeciesLotka Volterra competition predator prey systems. Appl MathComput . 2006 被引量:1
  • 10Xiao Y,Cao JD,Lin M.Discrete-time analogues of predator preymodels with monotonic or nonmonotonic functional responses. Nonlinear Analysis Real World Applications . 2007 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部