摘要
The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.
The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.