摘要
In this study, we analyze how vitamin D (VD) serum levels flow with latitude and throughout seasons of the year within a population sample over three years, taking into account that VD is mainly photosynthesized in the skin from sun exposure. Vitamin D levels have been measured in 80,763 patients during 2013, 2014, and 2015. To accomplish the objectives, we first perform some inference tests like two-way Analysis of Variance (ANOVA) followed by post-hoc tests. Secondly, we develop time series techniques including cross correlation calculations. Least than 10% of the sample had healthy VD levels, which should be a fact of public health major concern. The effect of the interaction between the two factors, zones and seasons, was proved by ANOVA. The mean values which are significantly different were determined by post hoc test. Furthermore, we find that mean serum VD levels, measured as 25-hydroxy-VD, follow a seasonal lag pattern of 9 weeks, a delay for minimum and maximum values after the respective equinoxes and daily sunlight duration. Reliable estimates of the population are provided in the present study, since one of the strengths is its huge sample size. We have quantitatively characterized the seasonality of serum vitamin D levels in the Argentine and the seasonal lag pattern has been determined for the study region.
In this study, we analyze how vitamin D (VD) serum levels flow with latitude and throughout seasons of the year within a population sample over three years, taking into account that VD is mainly photosynthesized in the skin from sun exposure. Vitamin D levels have been measured in 80,763 patients during 2013, 2014, and 2015. To accomplish the objectives, we first perform some inference tests like two-way Analysis of Variance (ANOVA) followed by post-hoc tests. Secondly, we develop time series techniques including cross correlation calculations. Least than 10% of the sample had healthy VD levels, which should be a fact of public health major concern. The effect of the interaction between the two factors, zones and seasons, was proved by ANOVA. The mean values which are significantly different were determined by post hoc test. Furthermore, we find that mean serum VD levels, measured as 25-hydroxy-VD, follow a seasonal lag pattern of 9 weeks, a delay for minimum and maximum values after the respective equinoxes and daily sunlight duration. Reliable estimates of the population are provided in the present study, since one of the strengths is its huge sample size. We have quantitatively characterized the seasonality of serum vitamin D levels in the Argentine and the seasonal lag pattern has been determined for the study region.