期刊文献+

The Dynamical Behavior of a Predator-Prey System with Holling Type II Functional Response and Allee Effect 被引量:4

The Dynamical Behavior of a Predator-Prey System with Holling Type II Functional Response and Allee Effect
下载PDF
导出
摘要 In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifurcation. Firstly, we gave some sufficient conditions to guarantee the existence, the local and global stability of equilibria as well as non-existence of limit cycles. By using the cobweb model, some cases about the existence of interior equilibrium are also illustrated with numerical outcomes. These existence and stability conclusions of interior equilibrium are also suitable in corresponding homogeneous reaction-diffusion system subject to the Neumann boundary conditions. Secondly, we theoretically deduced that our system has saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation under certain conditions. Finally, for the Hopf bifurcation, we choose d as the bifurcation parameter and presented some numerical simulations to verify feasibility and effectiveness of the theoretical derivation corresponding to the existence of yk, respectively. The Hopf bifurcations are supercritical and limit cycles generated by the critical points are stable. In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifurcation. Firstly, we gave some sufficient conditions to guarantee the existence, the local and global stability of equilibria as well as non-existence of limit cycles. By using the cobweb model, some cases about the existence of interior equilibrium are also illustrated with numerical outcomes. These existence and stability conclusions of interior equilibrium are also suitable in corresponding homogeneous reaction-diffusion system subject to the Neumann boundary conditions. Secondly, we theoretically deduced that our system has saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation under certain conditions. Finally, for the Hopf bifurcation, we choose d as the bifurcation parameter and presented some numerical simulations to verify feasibility and effectiveness of the theoretical derivation corresponding to the existence of yk, respectively. The Hopf bifurcations are supercritical and limit cycles generated by the critical points are stable.
出处 《Applied Mathematics》 2020年第5期407-425,共19页 应用数学(英文)
关键词 PREDATOR-PREY System HOLLING Type II FUNCTIONAL Response Allee Effect Stability HOPF BIFURCATION Predator-Prey System Holling Type II Functional Response Allee Effect Stability Hopf Bifurcation
  • 相关文献

同被引文献13

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部