摘要
The Linear Gaussian white noise process is an independent and identically distributed (iid) sequence with zero mean and finite variance with distribution N (0, σ2 ) . Hence, if X1, x2, …, Xn is a realization of such an iid sequence, this paper studies in detail the covariance structure of X1d, X2d, …, Xnd, d=1, 2, …. By this study, it is shown that: 1) all powers of a Linear Gaussian White Noise Process are iid but, not normally distributed and 2) the higher moments (variance and kurtosis) of Xtd, d=2, 3, … can be used to distinguish between the Linear Gaussian white noise process and other processes with similar covariance structure.
The Linear Gaussian white noise process is an independent and identically distributed (iid) sequence with zero mean and finite variance with distribution N (0, σ2 ) . Hence, if X1, x2, …, Xn is a realization of such an iid sequence, this paper studies in detail the covariance structure of X1d, X2d, …, Xnd, d=1, 2, …. By this study, it is shown that: 1) all powers of a Linear Gaussian White Noise Process are iid but, not normally distributed and 2) the higher moments (variance and kurtosis) of Xtd, d=2, 3, … can be used to distinguish between the Linear Gaussian white noise process and other processes with similar covariance structure.