期刊文献+

Modified Kuramoto Phase Model for Simulating Cardiac Pacemaker Cell Synchronization 被引量:2

Modified Kuramoto Phase Model for Simulating Cardiac Pacemaker Cell Synchronization
下载PDF
导出
摘要 It has been suggested that sick sinus syndrome, which is due to the dysfunction of the sinus node, may result from the sparser gap junctions and/or lower intrinsic frequencies of pacemaker cells that occur with aging. Hence, in this paper, the synchronization mechanism of pacemaker cells that lie in the sinus node of the heart is examined using a modified Kuramoto phase model. Although each element always interacts with all the others in the Kuramoto phase model, in the proposed model, each element interacts only with the neighbors over a certain time (called the interaction time) during Phase 4 of the action potential. The pacemaker cell elements are arranged on a square lattice, and each element connects with the elements surrounding it. The results indicate that the diversity of intrinsic frequencies of pacemaker cells may be necessary for synchronization. Moreover, increasing the proportion of invalid connections causes the elements to take more time to synchronize until eventually they do not synchronize at all, and decreasing the intrinsic frequencies of the elements prevents them from synchronizing. Probably these elucidate the cause of sick sinus syndrome. It has been suggested that sick sinus syndrome, which is due to the dysfunction of the sinus node, may result from the sparser gap junctions and/or lower intrinsic frequencies of pacemaker cells that occur with aging. Hence, in this paper, the synchronization mechanism of pacemaker cells that lie in the sinus node of the heart is examined using a modified Kuramoto phase model. Although each element always interacts with all the others in the Kuramoto phase model, in the proposed model, each element interacts only with the neighbors over a certain time (called the interaction time) during Phase 4 of the action potential. The pacemaker cell elements are arranged on a square lattice, and each element connects with the elements surrounding it. The results indicate that the diversity of intrinsic frequencies of pacemaker cells may be necessary for synchronization. Moreover, increasing the proportion of invalid connections causes the elements to take more time to synchronize until eventually they do not synchronize at all, and decreasing the intrinsic frequencies of the elements prevents them from synchronizing. Probably these elucidate the cause of sick sinus syndrome.
出处 《Applied Mathematics》 2017年第9期1227-1238,共12页 应用数学(英文)
关键词 Synchronization Sick SINUS Syndrome OSCILLATOR OVERDRIVE Suppression Test Gap JUNCTION Synchronization Sick Sinus Syndrome Oscillator Overdrive Suppression Test Gap Junction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部