摘要
This paper deals with the study of propagation of G type waves along the plane surface at the interface of two different types of media. The upper medium is taken as monoclinic magnetoelastic layer whereas the lower half-space is inhomogeneous isotropic. Dispersion equation and condition for maximum energy flow near the surface are obtained in compact form. The dispersion equation is in assertion with the classical Love-type wave equation for the isotropic case. Effect of magnetic field and inhomogeneity on phase velocity and variation of group velocity with scaled wave number has been depicted by means of graphs. It is observed that inhomogenetity decreases phase velocity and the magnetic field has the favouring effect. A comparative study for the case of isotropic layer and monoclinic layer over the same isotropic inhomogeneous half space has been made through graphs.
This paper deals with the study of propagation of G type waves along the plane surface at the interface of two different types of media. The upper medium is taken as monoclinic magnetoelastic layer whereas the lower half-space is inhomogeneous isotropic. Dispersion equation and condition for maximum energy flow near the surface are obtained in compact form. The dispersion equation is in assertion with the classical Love-type wave equation for the isotropic case. Effect of magnetic field and inhomogeneity on phase velocity and variation of group velocity with scaled wave number has been depicted by means of graphs. It is observed that inhomogenetity decreases phase velocity and the magnetic field has the favouring effect. A comparative study for the case of isotropic layer and monoclinic layer over the same isotropic inhomogeneous half space has been made through graphs.