期刊文献+

A Class of Algorithms for Solving LP Problems by Prioritizing the Constraints

A Class of Algorithms for Solving LP Problems by Prioritizing the Constraints
下载PDF
导出
摘要 Linear programming is a method for solving linear optimization problems with constraints, widely met in real-world applications. In the vast majority of these applications, the number of constraints is significantly larger than the number of variables. Since the crucial subject of these problems is to detect the constraints that will be verified as equality in an optimal solution, there are methods for investigating such constraints to accelerate the whole process. In this paper, a technique named proximity technique is addressed, which under a proposed theoretical framework gives an ascending order to the constraints in such a way that those with low ranking are characterized of high priority to be binding. Under this framework, two new Linear programming optimization algorithms are introduced, based on a proposed Utility matrix and a utility vector accordingly. For testing the addressed algorithms firstly a generator of 10,000 random linear programming problems of dimension n with m constraints, where , is introduced in order to simulate as many as possible real-world problems, and secondly, real-life linear programming examples from the NETLIB repository are tested. A discussion of the numerical results is given. Furthermore, already known methods for solving linear programming problems are suggested to be fitted under the proposed framework. Linear programming is a method for solving linear optimization problems with constraints, widely met in real-world applications. In the vast majority of these applications, the number of constraints is significantly larger than the number of variables. Since the crucial subject of these problems is to detect the constraints that will be verified as equality in an optimal solution, there are methods for investigating such constraints to accelerate the whole process. In this paper, a technique named proximity technique is addressed, which under a proposed theoretical framework gives an ascending order to the constraints in such a way that those with low ranking are characterized of high priority to be binding. Under this framework, two new Linear programming optimization algorithms are introduced, based on a proposed Utility matrix and a utility vector accordingly. For testing the addressed algorithms firstly a generator of 10,000 random linear programming problems of dimension n with m constraints, where , is introduced in order to simulate as many as possible real-world problems, and secondly, real-life linear programming examples from the NETLIB repository are tested. A discussion of the numerical results is given. Furthermore, already known methods for solving linear programming problems are suggested to be fitted under the proposed framework.
作者 Dimitris G. Tsarmpopoulos Christina D. Nikolakakou George S. Androulakis Dimitris G. Tsarmpopoulos;Christina D. Nikolakakou;George S. Androulakis(Department of Business Administration, University of Patras, Patras, Greece;Department of Digital Systems, University of the Peloponnese, Sparta, Greece)
出处 《American Journal of Operations Research》 2023年第6期177-205,共29页 美国运筹学期刊(英文)
关键词 Linear Programming Binding Constraints Redundant Constraints Proximity Technique Constraint Ranking Constraint Detection Linear Programming Binding Constraints Redundant Constraints Proximity Technique Constraint Ranking Constraint Detection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部