摘要
This work presents the mathematical framework of the “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N),” which generalizes and extends all of the previous works performed to date on this subject. The 5<sup>th</sup>-CASAM-N enables the exact and efficient computation of all sensitivities, up to and including fifth-order, of model responses to uncertain model parameters and uncertain boundaries of the system’s domain of definition, thus enabling, inter alia, the quantification of uncertainties stemming from manufacturing tolerances. The 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.
This work presents the mathematical framework of the “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N),” which generalizes and extends all of the previous works performed to date on this subject. The 5<sup>th</sup>-CASAM-N enables the exact and efficient computation of all sensitivities, up to and including fifth-order, of model responses to uncertain model parameters and uncertain boundaries of the system’s domain of definition, thus enabling, inter alia, the quantification of uncertainties stemming from manufacturing tolerances. The 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.
作者
Dan Gabriel Cacuci
Dan Gabriel Cacuci(Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC, USA)