摘要
In this paper, we study the structure of the space of functions of bounded second variation in the sense of Shiba;an integral representation theorem is also proved and necessary conditions are given for that the space be closed under composition of functions. Another significant result is the proof that this space of bounded second variation in the sense of Shiba is a Banach algebra, which is not immediate as it happens in other spaces of generalized bounded variation.
In this paper, we study the structure of the space of functions of bounded second variation in the sense of Shiba;an integral representation theorem is also proved and necessary conditions are given for that the space be closed under composition of functions. Another significant result is the proof that this space of bounded second variation in the sense of Shiba is a Banach algebra, which is not immediate as it happens in other spaces of generalized bounded variation.