期刊文献+

An Exact Mathematical Picture of Quantum Spacetime

An Exact Mathematical Picture of Quantum Spacetime
下载PDF
导出
摘要 Using von Neumann’s continuous geometry in conjunction with A. Connes’ noncommutative geometry an exact mathematical-topological picture of quantum spacetime is developed ab initio. The final result coincides with the general conclusion of E-infinity theory and previous results obtained in the realm of high energy physics. In particular it is concluded that the quantum particle and the quantum wave spans quantum spacetime and conversely quantum particles and waves mutates from quantum spacetime. Using von Neumann’s continuous geometry in conjunction with A. Connes’ noncommutative geometry an exact mathematical-topological picture of quantum spacetime is developed ab initio. The final result coincides with the general conclusion of E-infinity theory and previous results obtained in the realm of high energy physics. In particular it is concluded that the quantum particle and the quantum wave spans quantum spacetime and conversely quantum particles and waves mutates from quantum spacetime.
机构地区 Department of Physics
出处 《Advances in Pure Mathematics》 2015年第9期560-570,共11页 理论数学进展(英文)
关键词 E-INFINITY QUANTUM SPACETIME Noncommutative GEOMETRY Fractals Transfinite Set THEORY Von Neumann Continuous GEOMETRY Cantor Sets Fusion Algebra Zero Point ENERGY Vacuum Fluctuation QUANTUM Field THEORY Casimir Effect Dark ENERGY E-Infinity Quantum Spacetime Noncommutative Geometry Fractals Transfinite Set Theory Von Neumann Continuous Geometry Cantor Sets Fusion Algebra Zero Point Energy Vacuum Fluctuation Quantum Field Theory Casimir Effect Dark Energy
  • 相关文献

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部