期刊文献+

Nemytskii Operator in the Space of Set-Valued Functions of Bounded <i>φ</i>-Variation

Nemytskii Operator in the Space of Set-Valued Functions of Bounded <i>φ</i>-Variation
下载PDF
导出
摘要 In this paper we consider the Nemytskii operator, i.e., the composition operator defined by (Nf)(t)=H(t,f(t)), where H is a given set-valued function. It is shown that if the operator N maps the space of functions bounded φ1-variation in the sense of Riesz with respect to the weight function αinto the space of set-valued functions of bounded φ2-variation in the sense of Riesz with respect to the weight, if it is globally Lipschitzian, then it has to be of the form (Nf)(t)=A(t)f(t)+B(t), where A(t) is a linear continuous set-valued function and B is a set-valued function of bounded φ2-variation in the sense of Riesz with respect to the weight. In this paper we consider the Nemytskii operator, i.e., the composition operator defined by (Nf)(t)=H(t,f(t)), where H is a given set-valued function. It is shown that if the operator N maps the space of functions bounded φ1-variation in the sense of Riesz with respect to the weight function αinto the space of set-valued functions of bounded φ2-variation in the sense of Riesz with respect to the weight, if it is globally Lipschitzian, then it has to be of the form (Nf)(t)=A(t)f(t)+B(t), where A(t) is a linear continuous set-valued function and B is a set-valued function of bounded φ2-variation in the sense of Riesz with respect to the weight.
作者 Wadie Aziz
出处 《Advances in Pure Mathematics》 2013年第6期563-575,共13页 理论数学进展(英文)
关键词 BOUNDED VARIATION FUNCTION of BOUNDED VARIATION in the Sense of Riesz VARIATION SPACE Weight FUNCTION Banach SPACE Algebra SPACE Bounded Variation Function of Bounded Variation in the Sense of Riesz Variation Space Weight Function Banach Space Algebra Space
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部