摘要
In this article, the mechanisms of central pain syndrome (CPS) are examined for the purpose of gaining insight into how a unified conscious experience arises from brain and body interaction. We provide a novel etiology for CPS via implementation of the previously proposed 3D Default Space (3DDS) consciousness model in which consciousness and body schema arise when afferent information is processed by corticothalamic feedback loops and integrated via the thalamus. Further, we propose the mechanisms by which CPS represents deficits in dynamic interactions between afferent and efferent signaling. Modern hypotheses of CPS suggest roles for maladaptive neuroplasticity, a deafferentated somatosensory cortex and/or thalamus, and reorganization along the sensory pathways of the spinothalamic tract in the pathogenesis of the painful sensations. We propose that CPS arises when painful sensory signals originating along the maladapted and/or dysfunctional spinothalamic tract become accentuated by the dominant top down mechanisms of the brain.
In this article, the mechanisms of central pain syndrome (CPS) are examined for the purpose of gaining insight into how a unified conscious experience arises from brain and body interaction. We provide a novel etiology for CPS via implementation of the previously proposed 3D Default Space (3DDS) consciousness model in which consciousness and body schema arise when afferent information is processed by corticothalamic feedback loops and integrated via the thalamus. Further, we propose the mechanisms by which CPS represents deficits in dynamic interactions between afferent and efferent signaling. Modern hypotheses of CPS suggest roles for maladaptive neuroplasticity, a deafferentated somatosensory cortex and/or thalamus, and reorganization along the sensory pathways of the spinothalamic tract in the pathogenesis of the painful sensations. We propose that CPS arises when painful sensory signals originating along the maladapted and/or dysfunctional spinothalamic tract become accentuated by the dominant top down mechanisms of the brain.