摘要
Purpose: Dosimetric study to evaluate impact of “beam” reduction in AVM radiosurgery on normal brain dose parameters and it’s clinical implications. Materials and Methods: Five small volume AVMs (nidus volume 0.31 - 1.94 cc) planned for single fraction SRS with robotic radiosurgery system. Planning scans done with CT scan brain, CT & MR angiography, then nidus volume and organ at risk (OARs) were contoured. Planning was done with multiplan planning system. Plan evaluated as per Flickenger model parameters of 12 Gy nomal brain vol & marginal dose. 7.5 mm and 10 mm cons used, optimization done with seqential algorithm. 20 Gy was prescribed to isodose with appropriate nidus coverage (>98%). Total beams of five plans were 85 - 250, monitor unit 17,259 - 24,602 MU. 12 Gy normal brain volume is 0.9 - 7.6 cc. Then beam reduction is done by reducing beams with minimum MU in steps of 50, 100, 150, 200, 250 MU and after beam reduction, re-optimization done. Prescription isodose was changed to keep the nidus coverage > 98%. Impacts of beam reduction on 12 Gy normal brain vol and conformity/homogeniety index were analyzed. Results: Optimal plans of five patients with 20 Gy prescribed to 88% - 90% isodose, nidus coverage more than 98%. In dosimetric parameters, mean CI was 1.36 - 1.51, nCI 1.41 - 1.51, HI 1.1 - 1.4 and mean 12 Gy normal brain volume 0.17, 1.44, 5.3, 5.5 and 7.6cc respectively. After beam reduction of less than 50 MU contribution (in case#1), prescibing at suitable isodose (85%) beam reduces to 79 and 12 Gy volume marginally increases to 26.4 cc. Beam reduction of less than 100 MU reduces to 53 - 92 beamlets. Reduction of beams with less than 150 MU contribution did not significantly change the 12Gy normal brain volume. However, reduction of beamlets with more than 200 MU, 250 MU, 300 MU, 450 MU and 550 MU significantly affects the 12 Gy normal brain volume. Prescription-isodose modified from 83% to 50% to have >98% coverage. CI and HI increased from 1.36 - 1.51 to 2.51 - 2.63 and 1.1 - 1.4 to 1.52 - 1.5
Purpose: Dosimetric study to evaluate impact of “beam” reduction in AVM radiosurgery on normal brain dose parameters and it’s clinical implications. Materials and Methods: Five small volume AVMs (nidus volume 0.31 - 1.94 cc) planned for single fraction SRS with robotic radiosurgery system. Planning scans done with CT scan brain, CT & MR angiography, then nidus volume and organ at risk (OARs) were contoured. Planning was done with multiplan planning system. Plan evaluated as per Flickenger model parameters of 12 Gy nomal brain vol & marginal dose. 7.5 mm and 10 mm cons used, optimization done with seqential algorithm. 20 Gy was prescribed to isodose with appropriate nidus coverage (>98%). Total beams of five plans were 85 - 250, monitor unit 17,259 - 24,602 MU. 12 Gy normal brain volume is 0.9 - 7.6 cc. Then beam reduction is done by reducing beams with minimum MU in steps of 50, 100, 150, 200, 250 MU and after beam reduction, re-optimization done. Prescription isodose was changed to keep the nidus coverage > 98%. Impacts of beam reduction on 12 Gy normal brain vol and conformity/homogeniety index were analyzed. Results: Optimal plans of five patients with 20 Gy prescribed to 88% - 90% isodose, nidus coverage more than 98%. In dosimetric parameters, mean CI was 1.36 - 1.51, nCI 1.41 - 1.51, HI 1.1 - 1.4 and mean 12 Gy normal brain volume 0.17, 1.44, 5.3, 5.5 and 7.6cc respectively. After beam reduction of less than 50 MU contribution (in case#1), prescibing at suitable isodose (85%) beam reduces to 79 and 12 Gy volume marginally increases to 26.4 cc. Beam reduction of less than 100 MU reduces to 53 - 92 beamlets. Reduction of beams with less than 150 MU contribution did not significantly change the 12Gy normal brain volume. However, reduction of beamlets with more than 200 MU, 250 MU, 300 MU, 450 MU and 550 MU significantly affects the 12 Gy normal brain volume. Prescription-isodose modified from 83% to 50% to have >98% coverage. CI and HI increased from 1.36 - 1.51 to 2.51 - 2.63 and 1.1 - 1.4 to 1.52 - 1.5