期刊文献+

A Quality Assurance Approach for Linear Accelerator Mechanical Isocenters with Portal Images

A Quality Assurance Approach for Linear Accelerator Mechanical Isocenters with Portal Images
下载PDF
导出
摘要 Purpose: With usually a millimeter-level PTV margin, stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) pose a stringent requirement on the isocentricity of the Linac. This requirement is partly fulfilled by routine isocenter quality assurance (QA) test to verify the size and location of the isocenter. The current common QA methods such as spoke shot were developed before SBRT/SRS became popular and when IGRT was largely absent and hence have their limitations. In this work, we describe an isocenter QA approach based on portal imaging to provide the community with a superior alternative. Methods: The proposed approach utilizes a BrainLab ball bearing (BB) phantom in conjunction with an electronic portal imaging devices (EPID) imager. The BB phantom was first aligned with a calibrated room laser system. Portal images were then acquired using 6 MV beam with a 2 × 2 cm2 open field and a 15 mm cone on a Varian TrueBeam STx machine. The gantry, collimator, and table were rotated separately at selected angles to acquire a series of portal images in order to determine the isocenter of each rotating system. The location and diameter of these isocenters were determined by calculating the relative displacement of either BB or open field edge between the acquired EPID images. The demonstration of the reproducibility and robustness of this EPID-based approach was carried out by repeating measurements 10 times independently for each rotating system and simulating clinical scenarios of asymmetric jaws and misalignment of BB phantom, respectively. Results: For our TrueBeam STx machine, the isocenter diameter derived from open-field EPID images was roughly 0.15 mm, 0.18 mm, 0.49 mm for the collimator, table, and gantry, respectively. For the collimator and gantry, images taken with the cone gave considerably smaller isocenter diameter. Results remained almost unchanged despite the presence of simulated BB misalignment and asymmetric jaws error, and between independent measurements. Isocenter location Purpose: With usually a millimeter-level PTV margin, stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) pose a stringent requirement on the isocentricity of the Linac. This requirement is partly fulfilled by routine isocenter quality assurance (QA) test to verify the size and location of the isocenter. The current common QA methods such as spoke shot were developed before SBRT/SRS became popular and when IGRT was largely absent and hence have their limitations. In this work, we describe an isocenter QA approach based on portal imaging to provide the community with a superior alternative. Methods: The proposed approach utilizes a BrainLab ball bearing (BB) phantom in conjunction with an electronic portal imaging devices (EPID) imager. The BB phantom was first aligned with a calibrated room laser system. Portal images were then acquired using 6 MV beam with a 2 × 2 cm2 open field and a 15 mm cone on a Varian TrueBeam STx machine. The gantry, collimator, and table were rotated separately at selected angles to acquire a series of portal images in order to determine the isocenter of each rotating system. The location and diameter of these isocenters were determined by calculating the relative displacement of either BB or open field edge between the acquired EPID images. The demonstration of the reproducibility and robustness of this EPID-based approach was carried out by repeating measurements 10 times independently for each rotating system and simulating clinical scenarios of asymmetric jaws and misalignment of BB phantom, respectively. Results: For our TrueBeam STx machine, the isocenter diameter derived from open-field EPID images was roughly 0.15 mm, 0.18 mm, 0.49 mm for the collimator, table, and gantry, respectively. For the collimator and gantry, images taken with the cone gave considerably smaller isocenter diameter. Results remained almost unchanged despite the presence of simulated BB misalignment and asymmetric jaws error, and between independent measurements. Isocenter location
出处 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2018年第1期100-114,共15页 医学物理学、临床工程、放射肿瘤学(英文)
关键词 Linear Accelerator ISOCENTER MECHANICAL CHECK Quality ASSURANCE SPOKE Shot Linear Accelerator Isocenter Mechanical Check Quality Assurance Spoke Shot
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部