期刊文献+

Pharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging

Pharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging
下载PDF
导出
摘要 We have previously demonstrated that antagonism of glutamate NMDA receptors or activation of endocannabinoid receptors could reduce experimentally induced neuroinflammation within the hippocampus of young rats. In the current study, we investigated whether pharmacological manipulation of glutamate or endocannabinoid neurotransmission could reduce naturally-occurring neuroinflammation within the hippocampus of aged rats. We investigated whether UCM707, an inhibitor of endocannabinoid re-uptake, WIN- 55,212-2, an endocannabinoid receptor agonist, and URB597, an inhibitor of endocannabinoid catabolism, or memantine, a non-competitive, low-affinity, inhibitor of the open NMDA receptor channel, could reduce the number of MHC II-IR microglia within the hippocampus. All of the drugs, except URB597, reduced the number of reactive microglia, as compared to vehicle treated rats. The current results suggest potential pharmacological approaches that may mitigate the pathological consequences of chronic brain inflammation associated with numerous neurodegenerative diseases. We have previously demonstrated that antagonism of glutamate NMDA receptors or activation of endocannabinoid receptors could reduce experimentally induced neuroinflammation within the hippocampus of young rats. In the current study, we investigated whether pharmacological manipulation of glutamate or endocannabinoid neurotransmission could reduce naturally-occurring neuroinflammation within the hippocampus of aged rats. We investigated whether UCM707, an inhibitor of endocannabinoid re-uptake, WIN- 55,212-2, an endocannabinoid receptor agonist, and URB597, an inhibitor of endocannabinoid catabolism, or memantine, a non-competitive, low-affinity, inhibitor of the open NMDA receptor channel, could reduce the number of MHC II-IR microglia within the hippocampus. All of the drugs, except URB597, reduced the number of reactive microglia, as compared to vehicle treated rats. The current results suggest potential pharmacological approaches that may mitigate the pathological consequences of chronic brain inflammation associated with numerous neurodegenerative diseases.
出处 《Health》 2012年第9期679-684,共6页 健康(英文)
关键词 Rats MEMANTINE UCM707 MICROGLIA WIN-55 212-2 URB597 Rats Memantine UCM707 Microglia WIN-55 212-2 URB597
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部