摘要
Traffic incident management (TIM) is a FHWA Every Day Counts initiative with the objective of reducing secondary crashes, improving travel reliability, and ensuring safety of responders. Agency roadside cameras play a critical role in TIM by helping dispatchers quickly identify the precise location of incidents when receiving reports from motorists with varying levels of spatial accuracy. Reconciling position reports that are often mile marker based, with cameras that operate in a Pan-Tilt-Zoom coordinate system relies on dispatchers having detailed knowledge for hundreds of cameras and perhaps some presets. During real-time incident dispatching, reducing the time it takes to identify the most relevant cameras and setting their view on the incident is an important opportunity to improve incident management dispatch times. This research develops a camera-to-mile marker mapping technique that automatically sets the camera view to a specified mile marker within the field-of-view of the camera. Over 350 traffic cameras along Indiana’s 2250 directional miles of interstate were mapped to approximately 5000 discrete locations that correspond to approximately 780 directional miles (~35% of interstate) of camera coverage. This newly developed technique will allow operators to quickly identify the nearest camera and set them to the reported location. This research also identifies segments on the interstate system with limited or no camera coverage for decision makers to prioritize future capital investments. This paper concludes with brief discussion on future research to automate the mapping using LiDAR data and to set the cameras after automatically detecting the events using connected vehicle trajectory data.
Traffic incident management (TIM) is a FHWA Every Day Counts initiative with the objective of reducing secondary crashes, improving travel reliability, and ensuring safety of responders. Agency roadside cameras play a critical role in TIM by helping dispatchers quickly identify the precise location of incidents when receiving reports from motorists with varying levels of spatial accuracy. Reconciling position reports that are often mile marker based, with cameras that operate in a Pan-Tilt-Zoom coordinate system relies on dispatchers having detailed knowledge for hundreds of cameras and perhaps some presets. During real-time incident dispatching, reducing the time it takes to identify the most relevant cameras and setting their view on the incident is an important opportunity to improve incident management dispatch times. This research develops a camera-to-mile marker mapping technique that automatically sets the camera view to a specified mile marker within the field-of-view of the camera. Over 350 traffic cameras along Indiana’s 2250 directional miles of interstate were mapped to approximately 5000 discrete locations that correspond to approximately 780 directional miles (~35% of interstate) of camera coverage. This newly developed technique will allow operators to quickly identify the nearest camera and set them to the reported location. This research also identifies segments on the interstate system with limited or no camera coverage for decision makers to prioritize future capital investments. This paper concludes with brief discussion on future research to automate the mapping using LiDAR data and to set the cameras after automatically detecting the events using connected vehicle trajectory data.