摘要
After the North China grid and the Central China grid get into connection with the UHVAC demonstration, a new phenomenon is discovered according to some simulations. That is, the faults at the remote end of the UHV interconnected grid will result in significant power fluctuation and voltage drop on the UHV transmission line and even system splitting. But the faults near the UHV line only have marginal effects. Further, the simulation results also indicate that the short-circuit current of the buses near the UHV line is larger than that of the buses far away from the UHV line. This phenomenon is divergent from the traditional view. In this paper, the detail will be introduced, and the factors influencing the system stability after faults are presented and analyzed. The results indicate that transmission power of the UHV line and of the lines between the remote end and the major grid influence the fluctuation on UHV line. The load model and the grid structure of the remote end also have effect on it. Finally, corresponding control scheme is presented to improve the operation conditions of the UHV interconnected grid and ensure its security and stability.
After the North China grid and the Central China grid get into connection with the UHVAC demonstration, a new phenomenon is discovered according to some simulations. That is, the faults at the remote end of the UHV interconnected grid will result in significant power fluctuation and voltage drop on the UHV transmission line and even system splitting. But the faults near the UHV line only have marginal effects. Further, the simulation results also indicate that the short-circuit current of the buses near the UHV line is larger than that of the buses far away from the UHV line. This phenomenon is divergent from the traditional view. In this paper, the detail will be introduced, and the factors influencing the system stability after faults are presented and analyzed. The results indicate that transmission power of the UHV line and of the lines between the remote end and the major grid influence the fluctuation on UHV line. The load model and the grid structure of the remote end also have effect on it. Finally, corresponding control scheme is presented to improve the operation conditions of the UHV interconnected grid and ensure its security and stability.