摘要
The Middle East (ME) is characterized by its water shortage problem. This region with its arid climate is expected to be the most vulnerable in the world to the potential impacts of climate change. Iraq (located in ME) is seriously experiencing water shortage problem. To overcome this problem rain water harvesting can be used. In this study the applicability of the long-term weather generator model in downscaling daily precipitation Central Iraq is used to project future changes of precipitation based on scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results indicated that December-February and September-November periods, based on the ensemble mean of seven GCMs, showed an increasing trend in the periods considered;however, a decreasing trend can be found in March, April, and May in the future.
The Middle East (ME) is characterized by its water shortage problem. This region with its arid climate is expected to be the most vulnerable in the world to the potential impacts of climate change. Iraq (located in ME) is seriously experiencing water shortage problem. To overcome this problem rain water harvesting can be used. In this study the applicability of the long-term weather generator model in downscaling daily precipitation Central Iraq is used to project future changes of precipitation based on scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results indicated that December-February and September-November periods, based on the ensemble mean of seven GCMs, showed an increasing trend in the periods considered;however, a decreasing trend can be found in March, April, and May in the future.