期刊文献+

An Integrated Analysis of Aberrantly Expressed miRNA and mRNA Profiles Unveils a Robust Regulatory Network in HepG2 Cell

An Integrated Analysis of Aberrantly Expressed miRNA and mRNA Profiles Unveils a Robust Regulatory Network in HepG2 Cell
下载PDF
导出
摘要 As crucial negative regulatory small non-coding molecules, microRNAs (miRNAs), have multiple biological roles. The abnormal expression of specific miRNAs may contribute to the occurrence and development of tumor. Here, based on HepG2 and L02 cells, we attempted to demonstrate the potential regulatory network of aberrantly expressed miRNA profiles, interaction between miRNA and mRNA, and potential functional correlation between different miRNAs. De-regulated miRNA and mRNA expression profiles were completely surveyed and identified by applying deep sequenc-ing and microarray techniques, respectively. The genome-wide and integrative analysis of miRNA-mRNA was performed based on their functional relationship according to experimentally validated and predicted targets. Nearly 50% targets were negatively regulated by at least 2 aberrantly expressed miRNAs. Similar results were obtained based on experimentally validated and predicted targets. Compared with abnormal miRNAs, their targets showed various expression patterns: stably expressed, down-regulated or up-regulated. Although the theoretical potential miRNA-mRNA interaction could be predicted, they showed consistent or inconsistent expression patterns. Both functional enrichment analysis of target mRNAs of dysregulated miRNAs and abnormal mRNA profiles suggested that corresponding pathways were involved in tumorigenesis. Moreover, to obtain potential functional relationships between different miRNAs, we also performed expression analysis of homologous miRNAs in gene families. Generally, they could co-regulate biological processes with similar roles. The integrative analysis of miRNA-mRNA indicated a complex and flexible regulatory network. The robust network mainly derived from multiple targets for a specific miRNA (and vice versa), each mRNA and co-regulation roles of different miRNAs. As crucial negative regulatory small non-coding molecules, microRNAs (miRNAs), have multiple biological roles. The abnormal expression of specific miRNAs may contribute to the occurrence and development of tumor. Here, based on HepG2 and L02 cells, we attempted to demonstrate the potential regulatory network of aberrantly expressed miRNA profiles, interaction between miRNA and mRNA, and potential functional correlation between different miRNAs. De-regulated miRNA and mRNA expression profiles were completely surveyed and identified by applying deep sequenc-ing and microarray techniques, respectively. The genome-wide and integrative analysis of miRNA-mRNA was performed based on their functional relationship according to experimentally validated and predicted targets. Nearly 50% targets were negatively regulated by at least 2 aberrantly expressed miRNAs. Similar results were obtained based on experimentally validated and predicted targets. Compared with abnormal miRNAs, their targets showed various expression patterns: stably expressed, down-regulated or up-regulated. Although the theoretical potential miRNA-mRNA interaction could be predicted, they showed consistent or inconsistent expression patterns. Both functional enrichment analysis of target mRNAs of dysregulated miRNAs and abnormal mRNA profiles suggested that corresponding pathways were involved in tumorigenesis. Moreover, to obtain potential functional relationships between different miRNAs, we also performed expression analysis of homologous miRNAs in gene families. Generally, they could co-regulate biological processes with similar roles. The integrative analysis of miRNA-mRNA indicated a complex and flexible regulatory network. The robust network mainly derived from multiple targets for a specific miRNA (and vice versa), each mRNA and co-regulation roles of different miRNAs.
出处 《Engineering(科研)》 2013年第10期53-56,共4页 工程(英文)(1947-3931)
关键词 MIRNA (microRNA) MRNA Intergrated Analysis HEPATOMA CARCINOMA Cell miRNA (microRNA) mRNA Intergrated Analysis Hepatoma Carcinoma Cell
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部