摘要
趋化描述了生物有机体受化学信号刺激所产生的偏向性运动,它在生物学、化学、医学等学科领域有着广泛的应用。本文研究齐次Neumann边界条件下的具次线性敏感及带logistic源的趋化消耗模型:,其中μ,χ > 0,r∈ℝ,α∈(0,1)和k > 1。在一维情形下,模型存在整体有界的古典解。
Chemotaxis describes the biased movement of biological organisms stimulated by chemical signals. It is widely used in biology, chemistry, medicine and other fields. In this paper, a sublinear sensitive chemotactic-consumption model with logistic source under homogeneous Neumann boundary conditions is studied:, where μ,χ > 0, r∈ℝ, α∈(0,1) and k > 1. In the one-dimensional case, the model has a globally bounded classical solution.
出处
《理论数学》
2023年第11期3139-3145,共7页
Pure Mathematics