摘要
文章考虑在三维情况下不可压的磁流体力学(MHD)方程解的正则性。使用Young不等式,Hölder不等式及Sobolev嵌入技术等,扩大了弱解正则的函数空间,证明了当∂3u,∂3b∈Lp(0,T;Lq(R3)),2/p+3/q=46/25+3/25q, 31/8≤q≤∞时,或者当∂3u,∂3b∈Lp(0,T;Lq(R3)),2/p+3/q=22/13+3/13q,19/8≤q≤∞时,且都有,则三维不可压MHD方程弱解(u, b)在(0,T]上是正则的。
This paper considers the regularity of weak solutions for incompressible MHD equations in 3D cases. Here, Yuong inequalities, Hölder inequalities and Sobolev embedding techniques are used to expand the integral space to which the weak solution belongs. Here, it is proved that the weak solution (u, b) is regular on (0,T], if ∂3u,∂3b∈Lp(0,T;Lq(R3)) and 2/p+3/q=46/25+3/25q, 31/8≤q≤∞ or ∂3u,∂3b∈Lp(0,T;Lq(R3)), 2/p+3/q=22/13+3/13q, 19/8≤q≤∞ ,together with .
出处
《理论数学》
2021年第4期640-646,共7页
Pure Mathematics