期刊文献+

二维矢量多极孤子和涡旋孤子探究

Research on Two-Dimensional Vector Multipole Solitons and Vortex Solitons
下载PDF
导出
摘要 本文研究了二维耦合具有空间的非线性薛定谔方程调制非线性和横向调制,推导并分析矢量多极孤子和涡旋孤子解。当选择调制深度取0和1时,分别得到矢量多极孤子和涡旋孤子结构。方位角裂片的数量(多个极化孤子的“花瓣”)由拓扑指数m确定,多极孤子中的层数通过n值确定。 In this paper,two-dimensional coupled nonlinear Schrödinger equations with spatial nonlinear modulation and lateral modulation are studied,and vector multipole and vortex soliton solutions are derived and analyzed.When the modulation depth is selected to be 0 and 1,the vector multi-pole and vortex soliton structures are obtained,respectively.The number of azimuthal lobes(the“petal"of a plurality of polarized solitons)is determined by the topological index m,and the number of layers in the multipole soliton is determined by the value of n.
作者 来娴静
出处 《现代物理》 CAS 2019年第4期191-195,共5页 Modern Physics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部