期刊文献+

基于改进多边滤波的点云三维重建与分析

3D Reconstruction and Analysis of Point Cloud Based on Improved Multilateral Filtering
下载PDF
导出
摘要 为了提高三维重建过程点云噪声的滤除准确度与重建精确度,提出一种基于尺度分类的点云多边滤波算法,在双边滤波基础上引入尺度分类的自适应参数,将曲率作为第三个滤波影响因子,兼顾滤波过程的噪声滤除与点云平滑。实验结果表明,所提多边滤波算法与双边滤波算法、高斯滤波算法相比,噪声滤除准确度最高,达97.1%。且在重建过程中保证了细节与平滑度,偏离模型真实表面程度最低。 In order to improve the filtering accuracy and reconstruction accuracy of point cloud noise in 3D reconstruction process, a multi-lateral filtering algorithm of point cloud based on scale classification was proposed. The adaptive parameters of scale classification were introduced on the basis of bilat-eral filtering, and the curvature was taken as the third filtering influence factor to give considera-tion to noise filtering and point cloud smoothing in the filtering process. The experimental results show that the proposed multi-lateral filtering algorithm has the highest noise removal accuracy of 97.1% compared with bilateral filtering algorithm and Gaussian filtering algorithm. In the recon-struction process, details and smoothness are guaranteed, and the deviation from the real surface of the model is minimal.
作者 潘方超
出处 《建模与仿真》 2023年第4期3564-3573,共10页 Modeling and Simulation
  • 相关文献

参考文献5

二级参考文献56

  • 1李了了,邓善熙,丁兴号.基于大津法的图像分块二值化算法[J].微计算机信息,2005,21(08X):76-77. 被引量:113
  • 2LIVNY Y, YAN F, OI.SON M, et al. Automatic reconstruction of tree skeletal structures from point clouds [ J]. ACM Transactions on Graphics: Proceedings of ACM SIGC, RAPH Asia 2010, 2010, 29 (6): Article No. 151. 被引量:1
  • 3WANG X, LI Z, MAI Y, et al. Robust .denoising of unorganized point clouds [ C]// ICISS 2013: Proceedings of the 2011 Interna- tional Conference on Intelligent Computing and Integrated Systems. Piscataway: 1EEE, 2013:1-3. 被引量:1
  • 4ROSMAN G, DUBROVINA A, KIMMEL R. Patch-collaborative spectral surface denoising [ J]. Computer Graphics Forum, 2013, 32( 8):1 -12. 被引量:1
  • 5XU S, YANG Z, WU W. Algorithm of 3D reconstruction based on point cloud segmentation denoising [C]//ICISE 2010: Proceedings of the 2010 2nd International Conference on Information Science and Engineering. Piscataway: 1EEE, 2010:3510-3513. 被引量:1
  • 6YANG Z, XIAO D. A systemic point-cloud de-noising and smoot- hing method for 3D shape reuse [ C]//ICARCV 2012: Proceedings of the 2012 12th International Conference on Control Automation Ro- botics & Vision. Piscatawav: IEEE, 2012:1722-1727. 被引量:1
  • 7JUN S. Two-stage point-sampled model denoising by robust ellip- soid criterion and mean shift [ C]//Proceedings of the 2013 Third International Conference on Intelligent System Design and Engi- neering Applications. Washington, DC: IEEE Computer Society, 2013:1581 - 1584. 被引量:1
  • 8FLEISHMAN S, DRORI I, COHEN-OR D. Bilateral mesh denois- ing [ J]. ACM Transactions on Graphics: Proceedings of ACM SIG- GRAPH 2003, 2003, 22(3): 950-953. 被引量:1
  • 9GRIMM C, SMART W D. Shape classification and normal estima- tion for non-uniformly sampled, noisy point data [ J]. Computers & Graphics, 2011, 35(4): 904-915. 被引量:1
  • 10LI B, SCHNABEL R, KLEIN R, et aL Robust normal estimation for point clouds with sharp features [ J]. Computers & Graphics, 2010, 34(2) : 94 - 106. 被引量:1

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部