期刊文献+

基于WGAN状态重构的智能电网虚假数据注入攻击检测

Detection of False Data Injection Attack in Smart Grid Based on WGAN State Reconfiguration
下载PDF
导出
摘要 针对虚假数据定位检测适应性低、篡改量测影响系统状态精确感知的问题,提出一种基于WGAN (Wasserstein generative adversarial networks, WGAN)状态重构的智能电网虚假数据检测与修正模型。首先,根据历史状态变量的概率分布,初步锁定并剔除具有潜在攻击风险的状态变量。然后,采用Wasserstein生成对抗网络重构缺失变量,WGAN通过Wasserstein距离衡量生成分布与真实分布之间的差异,能够生成有意义的梯度以优化网络模型参数。最后,以重构状态作为一种状态参考,精确定位攻击节点,并结合网络拓扑参数修正篡改量测值。将纽约州数据用在IEEE-14节点测试系统,进一步验证所提方法的可行性与有效性。 Aiming at the problems of low adaptability of false data location detection and the influence of tamper measurement on the accurate state awareness for the power system, a false data detection and correction model of smart grid based on state reconstruction of Wasserstein Generative Adver-sarial Networks (WGAN) was proposed. Firstly, the state variables with potential attack risk are ini-tially locked and eliminated according to the probability distribution of historical state variables. Then, the missing state variables are reconstructed by Wasserstein generative adversarial net-works. WGAN measures the difference between the generated distribution and the real distribution through Wasserstein distance, which can generate meaningful gradients to optimize the parame-ters of the network model. Finally, the reconstructed variables are used as a state reference to lo-cate the attacked bus, and to correct the measurement data combined with the network topology parameters. The feasibility and validity of the proposed method are further verified in IEEE-14 bus test system with the New York data.
作者 张笑 孙越
出处 《建模与仿真》 2023年第3期2182-2196,共15页 Modeling and Simulation
  • 相关文献

参考文献11

二级参考文献132

  • 1赵红嘎,薛禹胜,高翔,潘勇伟,岑宗浩,李碧君.量测量的时延差对状态估计的影响及其对策[J].电力系统自动化,2004,28(21):12-16. 被引量:36
  • 2李强,周京阳,于尔铿,刘树春,王磊.基于混合量测的电力系统状态估计混合算法[J].电力系统自动化,2005,29(19):31-35. 被引量:57
  • 3韦钢,吴伟力,胡丹云,李智华.分布式电源及其并网时对电网的影响[J].高电压技术,2007,33(1):36-40. 被引量:194
  • 4Liu Y, Ning P, Reiter M K. False data injection attacks against state estimation in electric power grids[J]. ACM Transactions on Information and System Security, 2011, 14(1): 13. 被引量:1
  • 5Yuan Y, Li Z, Ren K. Quantitative analysis of load redistribution attacks in power systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(9): 1731-1738. 被引量:1
  • 6Lin J, Yu W, Yang X. Towards multistep electricity prices in smart grid electricity markets[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(1): 286-302. 被引量:1
  • 7Sridhar S, Hahn A, Govindarasu M. Cyber-physical system security for the electric power grid[J]. Proceedings of the 1EEE, 2012, 100(1): 210-224. 被引量:1
  • 8Li Y, Wang Y. State summation for detecting false data attack on smart grid[J]. International Journal of Electrical Power & Energy Systems, 2014(57): 156-163. 被引量:1
  • 9Wang S, Ren W. Stealthy false data injection attacks against state estimation in power systems: Switching network topologies[C]//2014 American Control Conference. Portland, OR: IEEE, 2014: 1572-1577. 被引量:1
  • 10KuntzK, Smith M, WedewardK, etal. Detecting, locating, & quantifying false data injections utilizing grid topology through optimized D-FACTS device placement[C]//2014 North American Power Symposium. Pullman, WA: IEEE, 2014: 1-6. 被引量:1

共引文献425

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部