摘要
本文提出一种高精度有限体积格式数值求解一维Euler方程。为克服线性高阶格式在解的间断附近产生非物理振荡,作者利用Hermite插值多项式,结合对流有界性准则TVD和CBC构造了本文的数值格式。典型算例验证表明,本数值格式可以很好的计算一维Euler方程的间断初值问题。
In this paper, a high resolution finite volume scheme is proposed to solve one dimensional Euler equations. We use the Hermite interpolation method to construct the present scheme. Two kinds of convection boundedness criteria TVD and CBC are combined to suppress nonphysical wiggles of linear schemes near discontinuities. Some typical test cases show that the present numerical scheme can solve one dimensional Euler equation with discontinuous initial profiles efficiently.
作者
康亦欣
谢桃枫
高巍
Yixin Kang;Taofeng Xie;Wei Gao(School of Mathematical Sciences, Inner Mongolia University, Hohhot Inner Mongolia;School of Computer and Information Science, Inner Mongolia Medical University, Hohhot Inner Mongolia)
出处
《流体动力学》
2017年第2期56-68,共13页
International Journal of Fluid Dynamics
基金
内蒙古自治区人才开发基金项目(12000-1300020240)
内蒙古自然科学基金项目(2015MS0101)支持。