期刊文献+

基于LSTM-AR模型的光伏指数保险欺诈检测方法研究

Research on Photovoltaic Index Insurance Fraud Detection Method Based on LSTM-AR Model
下载PDF
导出
摘要 光伏指数保险是一种基于太阳辐射总量的天气指数保险产品,旨在为光伏电站提供发电量不足的风险保障。然而,光伏指数保险中存在着因缺乏客观数据与评价标准而导致的保险欺诈问题。本文针对这一问题,提出了一种基于深度学习的模型,结合LSTM、注意力机制和残差连接,该模型使用太阳辐射量对光电企业发电量进行预测。为验证模型的有效性,本文使用2019年新疆光电光伏数据集进行测试并与传统的最小二乘法的回归预测进行比较。测试结果表明,本文所提出的模型可以有效使用太阳辐射量对光电企业发电量进行预测,进而帮助保险企业针对光伏企业的发电量有关的保险欺诈行为进行识别,为光伏保险业务的规范化和发展提供了一种有效的技术手段。Photovoltaic (PV) index insurance is a weather index insurance product based on the total amount of solar radiation, designed to provide risk protection against insufficient power generation for PV power plants. However, PV index insurance faces issues of insurance fraud due to the lack of objective data and evaluation standards. To address this problem, this paper proposes a deep learning-based model that combines LSTM, attention mechanism, and residual connections. This model uses solar radiation data to predict the power generation of photovoltaic enterprises. To validate the effectiveness of the model, the 2019 Xinjiang photovoltaic dataset was used for testing and compared with traditional least squares regression predictions. The test results show that the proposed model can effectively use solar radiation data to predict the power generation of photovoltaic enterprises, thereby helping insurance companies identify fraudulent activities related to power generation in PV enterprises. This provides an effective technical means for the standardization and development of PV insurance business.
作者 贾伟 杨扬
出处 《金融》 2024年第5期1737-1745,共9页 Finance
  • 相关文献

参考文献13

二级参考文献96

  • 1徐翔,王来峰,黄晓梅,管伯渊,贲蕊.集中式光伏发电企业价值评估及其关键影响因素识别研究[J].中国资产评估,2021(7):69-80. 被引量:10
  • 2刘焱.新能源光伏发电企业融资风险及应对策略[J].企业改革与管理,2021(4):96-97. 被引量:15
  • 3Abbring, J. H, P. A. Chiappori & J. Pinquet 2003. Moral Hazard and Dynamic Insurance Data [ J]. Journal of the European Economic Association, 1 : 767 ~ 820. 被引量:1
  • 4Boyer, M. & G. Dionne. 1989. An Empirical Analysis of Moral Hazard and Experience Rating[J]. Review of Economies and Statistics, 71 : 128 - 134. 被引量:1
  • 5Cardon, J. & I. Hendel. 2001. Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey [ J]. Rand Journal of Economics, 32:408 ~ 427. 被引量:1
  • 6Chiappori P. A & B. Salanie. 2000. Testing for Asymmetric Information in Insurance Markets ~ J]. Journal of Political Economy, 108 : 56 -78. 被引量:1
  • 7Chiappori P. A & B. Salanie. 2003, Testing Contract Theory: A survey of Some Recent Work, in : M. Dewatrlpont, L.P. Hansen, &S. J. Tumovsky, eds,. Advances in Economies and Econometric Society Monographs( Cambridge: Cambridge University Press) ,115 ~ 149. 被引量:1
  • 8Chiappori, P. , F. Durand &P. Geoffard. 1998. Moral Hazard and the Demand for Physician Services: First Lessons from a French Natural Experiment [ J ]. European Economic Review, 42 : 499 ~ 511. 被引量:1
  • 9Chiappori, P.A. & B. 1997. Salanie. Empirical Contract Theory: The Case of Insurance Data [J]. European Economic Review, 41:943 -950. 被引量:1
  • 10De Meza, D. & D. C. Webb. 2001. Advantageous Selection in Insurance Markets [J]. Rand Journal of Economics, 32: 249 ~ 262. 被引量:1

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部