期刊文献+

基于LSTM的量化股票预测

LSTM Based Quantitative Stock Forecasting
下载PDF
导出
摘要 股票特征通常夹杂较多噪声数据,而带噪数据会影响股票预测模型的预测精度。本文提出一种对股票数据特征进行量化编码的方法,并使用长短期记忆网络构建预测模型,对量化后的数据进行预测。数据集采用沪深300成分股,在对股票数据量化后进行3分类涨跌幅预测。实验结果表明,使用量化编码对股票特征处理后,预测效果优于使用原始数据预测。 The features of stock are usually mixed with many noise data, and noisy data will affect the predic-tion accuracy of stock prediction model. In this paper, a quantitative coding method for stock data features is proposed, and a prediction model is constructed by using short and long term memory network to predict the quantified data. The data set uses the Shanghai and Shenzhen 300 compo-nent stocks, after the stock data quantification carries on the 3 classification rise and fall forecast. The experimental results show that the prediction effect is better than that of the original data after the stock feature is processed by quantitative coding.
出处 《金融》 2020年第4期366-373,共8页 Finance
关键词 特征量化 LSTM 沪深300 涨跌幅预测 Characteristic Quantification LSTM Shanghai and Shenzhen 300 Forecast of Increase or Decrease
  • 相关文献

参考文献4

二级参考文献31

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部