期刊文献+

浅谈个性化电视产品推荐系统面临的挑战

Talking about the Challenges Faced by Personalized TV Product Recommendation System
下载PDF
导出
摘要 三网融合使得广播电视运营商可以与众多的家庭用户实现信息的实时交互,这使得全方位、个性化的产品营销和有偿服务成为现实。个性化推荐系统作为解决当前大数据时代下信息过载问题的手段之一,如何在众多电视产品中挑选出既符合用户兴趣偏好又在保证正确率的条件下,使推荐结果能够更好的诠释发现性、新颖性和多样性要求。本文对个性化电视产品推荐系统中关键技术进行浅谈,对目前遇到的挑战进行讨论,从而有助于更好的完成推荐系统的设计实现。 The triple play enables broadcast and television operators to interact with a large number of home users in real time,making full-scale,personalized product marketing and paid services a reality.As one of the means to solve the information overload problem in the current era of big data,the personalized recommendation system is how to select the results of the user’s interest preference and the correct rate in many TV products,so that the recommendation results can be better interpreted sex,novelty and diversity requirements.This paper discusses the key technologies in the personalized TV product recommendation system,discusses the current challenges,and helps to better complete the design and implementation of the recommendation system.
作者 张兴伟 陈超
出处 《计算机科学与应用》 2019年第7期1358-1364,共7页 Computer Science and Application
  • 相关文献

参考文献17

二级参考文献75

  • 1廖世敏.从三网融合看广电网络发展[J].广东经济,2017,0(2X):209-209. 被引量:1
  • 2邵志峰,李荣陆,胡运发.基于中图分类法的用户兴趣模型研究[J].计算机应用与软件,2007,24(8):85-86. 被引量:9
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:192
  • 4Danilowicz C, Indyka-Piasecka A. Dynamic user profiles based on boolean formulas [C]//17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. Ottawa: [s. n. ] 2004: 779-787. 被引量:1
  • 5Salton G, Wong A, Yang C S. A vector space model for automatic indexing [J]//Communications of ACM, 1975, 18 (5) : 613. 被引量:1
  • 6Chen L, Sycara K. Web mate., a personal agent for browsing and searching [C]//the 2nd International Conference on Autonomous Agents and Multiagent Systerms. Minneapolis: [s.n.], 1998: 132-139. 被引量:1
  • 7Kesorn K, Liang Z K, Poslad S. Use of granularity and coverage in a user profile model to personalize visual content retrieval [C]//2009 Second International Conference on Advances in Human-oriented and Personalized Mechanism, Technologies, and Service. Porto: [s. n. ], 2009: 79-84. 被引量:1
  • 8Cooley R, Mobasher B, Srivastava J. Web mining., information and pattern discovery on the world wide web[C]//Proceeding of the 9th IEEE International Conference on Tools with Artificial Intelligence. Los Angeles: IEEE, 1997: 558-567. 被引量:1
  • 9Wang John. Encyclepedia of data warehousing and mining[M]. Calgary: Idea Group Inc, 2006. 被引量:1
  • 10Srivastava J, Cooley R, Deshpande M. Web usage mining: discovery and applications of usage pattern from web data[C]// SIGKDD Explorations. New York: Association for Computing Machinery, 2000:12-23. 被引量:1

共引文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部