期刊文献+

福建省人均地区生产总值预测研究

Prediction of Per Capita GDP in Fujian Province
下载PDF
导出
摘要 人均GDP可以反映一国的经济发展水平和人民生活水平,因此国内很多学者都很重视对GDP的研究及预测。本文通过福建统计局《福建统计年鉴-2019》,获取1978至2018年的福建省人均地区生产总值(人均GDP)数据。使用R软件,采用Box-Jenkins方法建立ARIMA模型,并从单位根非平稳性和趋势平稳性两个角度对数据进行建模,并对福建省人均GDP序列进行预测分析。分析结果显示,从单位根非平稳性角度进行建模的预测能力更好。因此,本文采用从单位根非平稳性角度建立的模型对福建省人均GDP进行预测研究。通过2014至2019年福建省人均GDP来测试ARIMA模型的预测能力,发现ARIMA模型的短期预测能力很可观,并使用ARIMA模型预测2020年福建省人均GDP,预测结果对2020年地区生产总值“翻一番”很有信心。但是经过2020年新型冠状病毒侵袭武汉,对福建省的生产也产生了不可低估的影响,因此对实现2020年地区生产总值“翻一番”,福建省政府、企业、个体仍任重道远。 Per capita GDP can reflect a country’s economic development level and people’s living standards, so many domestic scholars attach great importance to the research and prediction of GDP. This paper obtains the data of per capita GDP of Fujian Province from 1978 to 2018 through Fujian statistical yearbook-2019. Using R software and Box-Jenkins method, ARIMA model is established, and the data are modeled from the perspective of unit root nonstationarity and trend stationarity, and the per capita GDP series of Fujian Province is predicted and analyzed. The analysis results show that the prediction ability of modeling from the perspective of unit root nonstationarity is better. Therefore, the per capita GDP of Fujian Province is predicted by the model established from the perspective of unit root nonstationarity. The prediction ability of ARIMA model is tested through the per capita GDP of Fujian Province from 2014 to 2019. It is found that the short-term prediction ability of ARIMA model is considerable. The per capita GDP of Fujian Province in 2020 is predicted by ARIMA model. The forecast result is very confident that the GDP will “double” in 2020. However, the novel coronavirus attacked Wuhan in 2020, and it also had an impact on Fujian’s production. Therefore, the government, enterprises and individuals of Fujian province still have a long way to go to realize the “double” of 2020 gross domestic product.
作者 林贇英
机构地区 江西财经大学
出处 《社会科学前沿》 2020年第8期1136-1144,共9页 Advances in Social Sciences
关键词 人均GDP ARIMA 单位根非平稳 趋势平稳 预测 Per Capita GDP ARIMA Unit Root Nonstationarity Trend Stationarity Forecast
  • 相关文献

参考文献5

二级参考文献24

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部