期刊文献+

深度学习神经网络在力学模型参数估计中的应用研究进展 被引量:2

Some Developments of Estimation Procedures of Mechanical Model Parameter Based on Deep Learning Neural Network
下载PDF
导出
摘要 为了估计岩土材料的力学模型参数,讨论了基于经典BP神经网络的参数反演方法的基本框架和算法。分析了经典BP神经网络所存在的某些缺陷及其改进方法。结合两个基于深度学习神经网络估计锂离子电池电化学模型参数的例子,介绍了基于深度学习神经网络估计模型参数的基本思路。讨论了深度学习神经网络超参数确定方法,分析了提高深度学习神经网络学习效率和泛化能力的某些行之有效的策略。 In order to estimate mechanical model parameters of materials, the basic scheme and algorithm of parameter inversion based on classical BP neural network are discussed. Some drawbacks and improvement methods for classical BP neural network are analyzed. Combined two examples of estimating model parameters of electric-chemical model of Li-ion cells, the basic thinking of esti-mating model parameter procedure based on deep learning neural network is introduced. How to determine hyper parameters of deep learning neural network is discussed. How to improve learning efficiency and generalization ability of deep learning neural network is developed to es-timate model parameters of materials.
作者 李守巨
出处 《人工智能与机器人研究》 2020年第2期100-109,共10页 Artificial Intelligence and Robotics Research
基金 国家重点基础研究发展计划“973”项目(2015CB057804) 国家自然科学基金资助项目(11572079)。
  • 相关文献

参考文献5

二级参考文献27

  • 1张丙印,袁会娜,李全明.基于神经网络和演化算法的土石坝位移反演分析[J].岩土力学,2005,26(4):547-552. 被引量:37
  • 2Seo M W, Ha I S, Kim Y S. Behavior of Concrete-faced Rockfill Dams During Initial Impoundment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(8): 1070-1081. 被引量:1
  • 3Li Shouju. Computer Simulation of Sequential Impoundment Process of Concrete-faced Rockfill Dam[J]. Journal of Computers, 2012, 7(8): 1801-1808. 被引量:1
  • 4Zhou Wei, Hua Junjie, Chang Xiaolin, et al. Settlement Analysis of the Shuibuya Concrete-face Rockfill Dam[J]. Computers and Geotechnics, 2011, 38: 269-280. 被引量:1
  • 5Xu Bin, Zou Degao, Liu Huabei. Three-dimensional Simulation of the Construction Process of the Zipingpu Concrete Face Rockfill Dam Based on a Generalized Plasticity Model[J]. Computers and Geotechnics, 2012, 43: 143-154. 被引量:1
  • 6Zheng Dongjian, Cheng Lin, Bao Tengfei, et al. Integrated Parameter Inversion Analysis Method of a CFRD Based on Multi-output Support Vector Machines and the Clonal Selec- tion Algorithm[J]. Computers and Geotechnics, 2013, 47: 68-77. 被引量:1
  • 7Avril S, Bonnet M, Bretelle A. Overview of Identification Methods of Mechanical Parameters Based on Full-field Measure- ments[J]. Experimental Mechanics, 2008, 48(4): 381-402. 被引量:1
  • 8Smith L N, German R M, Smith M L. A Neural Network Approach for Solution of the Inverse Problem for Selection of Powder Metallurgy Materials[J]. Journal of Materials Processing Technology, 2002, 120(1): 419-425. 被引量:1
  • 9Vladimir M K, Helmut S. Some Neural Network Applications in Environmental Sciences, Part I: Forward and Inverse Problems in Geophysical Remote Measurements[J]. Neural Networks, 2003, 16(3/4): 321-334. 被引量:1
  • 10Vera K. Neural Network Learning as an Inverse Problem[J]. Logic Journal of the IGPL, 2005, 13(5): 551-559. 被引量:1

共引文献54

同被引文献56

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部