摘要
本文利用类比归纳的方法,证明了Gc-投射(Gc-内射)复形是投射(内射)可解的,以及在Frobenius 扩张下,复形的Gc-投射性和内射性是保持的。进一步,得到了在Frobenius扩张下,复形的Gc-投射维数和内射维数是不变的。
In this paper, by using the method of analogical induction, we prove that Gc-projective (Gc-injective) complexes are projectively (injectively) resolving and the Gc-projective (Gc-injective) properties of the complexes are preserved under the Frobenius exten-sion. Further, we obtain that Gc-Projective (Gc-injective) dimensions of the complexes are invariant under the Frobenius exteiLsion.
出处
《应用数学进展》
2022年第12期9066-9071,共6页
Advances in Applied Mathematics