期刊文献+

分数阶不可压缩Navier-Stokes-Coriolis方程周期解的存在性

Existence of Periodic Solutions to the Fractional Navier-Stokes-Coriolis Equation
下载PDF
导出
摘要 本文研究了带有旋转效应的分数阶Navier-Stokes方程在给定周期外力作用下周期mild解的存在唯一性,并且建立了Besov空间中分数阶热半群的线性估计。首先,给出符号及函数空间的定义。其次,采用分数阶热半群的Lp-Lq估计,分别对分数阶不可压缩Navier-Stokes-Coriolis方程的线性项及非线性项进行了估计。最后证明了给定一个具有周期ω的外力f,分数阶不可压缩Navier-Stokes-Coriolis方程周期mild解是唯一存在的,且周期也为ω。 In this paper, we study the existence and uniqueness of periodic mild solution for fractional incompressible Navier-Stokes equations in the rotational framework and establish the linear estimation of fractional heat semigroups in Besov space. Firstly, the definition of symbol and function space is given. Secondly, the linear and nonlinear terms of the fractional incompressible Navier-Stokes-Coriolis equations were estimated by using the Lp-Lq estimates of fractional heat semigroups. Finally, we proved that given an external force with periodic ω, the periodic mild solution of the fractional incompressible Navier-Stokes-Coriolis equation is uniqueness and its period is also ω.
机构地区 西北师范大学
出处 《应用数学进展》 2022年第1期193-203,共11页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献11

  • 1D'Ancona P, Pierfelice V, Visciglia N. Some remarks on the Schr?dinger equation with a potential in Ltr Lxs . Math Ann, 2005, 333: 271-290. 被引量:1
  • 2Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math. Providence, RI: Amer Math Soc, 1991. 被引量:1
  • 3Keel M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120: 955-980. 被引量:1
  • 4Miao C, Gu Y. Space-time estimates for parabolic type operator and application to nonlinear parabolic equations. J Partial Differential Equations, 1998, 11: 301-312. 被引量:1
  • 5Miao C, Yuan B, Zhang B. Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal, 2008, 68: 461-484. 被引量:1
  • 6Miao C, Zhang B. The Cauchy problem for semilinear parabolic equations in Besov spaces. Houston J Math, 2004,30: 829-878. 被引量:1
  • 7Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993. 被引量:1
  • 8Tao T. Global regularity of wave maps IV: Absence of stationary or self-similar solutions in the energy class. ArXiv:0806.3592v2, 2009. 被引量:1
  • 9Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam-New York-Oxford: North-Holland Publishing Co, 1978. 被引量:1
  • 10Triebel H. Theory of Function Spaces. Basel: Birkh?user, 1983. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部