摘要
图G的一个正常k-全染色是指一个映射,使得中任意两个相邻的或相关联的元素染不同颜色。令Cφ(v)表示点v的颜色与v的关联边的颜色组成的集合。如果满足对任意一条边都有和,则称φ是k-严格邻点可区别的。图G的严格邻点可区别全色数是使G是k-严格邻点可区别全可染的最小正整数k,用χsnt(G)表示。本文证明了每个子立方图满足。
A proper total k-coloring of a graph G is a mapping , such that any two adjacent or incident elements in receive different colors. Let Cφ(v) be the set of colors assigned to a vertex v and those edges incident to v. φ is strict neighbor-distinguishing if and for each edge . The strict neighbor-distin- guishing total index, denoted by χsnt(G), of G is the minimum integer k such that G is k-strict neighbor-distinguishing total colorable. In this paper, we prove that every subcubic graph G has.
出处
《应用数学进展》
2020年第8期1346-1350,共5页
Advances in Applied Mathematics
关键词
严格邻点可区别全染色
严格邻点可区别全色数
子立方图
Strict Neighbor-Distinguishing Total Coloring
Strict Neighbor-Distinguishing Total Index
Subcubic Graphs