期刊文献+

多目标演化算法在混合电动车设计和控制中的应用 被引量:3

Application of Multi-objective Evolutionary Algor ithm in Hybrid Electric Vehicle Design and Control
下载PDF
导出
摘要 以混合电动车 ( HEV)的性能仿真软件 ADVISOR为平台 ,应用一种高效的多目标演化算法——非占优排序遗传算法 ( NSGA-II) ,将一辆并联 HEV的百公里油耗和 HC,CO,NOx的排放等4个目标同时进行了优化 ,优化变量同时包含了部件尺寸参数和能源管理策略参数 ,得到了一组Pareto解 .针对该 Pareto解集的分析表明 ,在不牺牲动力性的前提下 ,NSGA- 大大提高了原车的经济性能和排放性能 ,并且为 Based on the hybrid electric vehicle (HEV) simulator, ADVISOR, the paper treats the component sizes of a parallel HEV together with the energy strategy parameters as variables, and optimizes its fuel consumption and HC, CO, NOx emissions simultaneously, using one of the efficient multi-objective evolutionary algorithms, non-dominated sorting genetic algorithm (NSGA-Ⅱ). The obtained Pareto-optimal set shows that NSGA-Ⅱ improves the fuel economy and reduces the emissions of the original HEV without sacrifice of vehicle performances. It is more important that the Pareto-optimal set provides a wide range of choices for the HEV design as well as control.
出处 《武汉理工大学学报(交通科学与工程版)》 北大核心 2004年第3期384-387,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 教育部重点项目资助 (批准号 :0 2 175 )
关键词 混合电动车 多目标优化 非占优排序遗传算法 演化算法 ADVISOR hybrid electric vehicle multi-objective optimization NSGA-Ⅱ evolutionary algorithm ADVISOR
  • 相关文献

参考文献6

  • 1Markel T, Brooker A, Hendricks T, et al. ADVISOR; a systems analysis tool for advanced vehicle modeling. Journal of Power Sources, 2002,110(2);255~266 被引量:1
  • 2Fellini R. Derivative-free and global search optimization algorithms in an object-oriented design framework: [dissertation]. The University of Michigan, Ann Arbor, USA, 1998 被引量:1
  • 3黄妙华,喻厚宇.串联混合动力电动客车控制策略的优化设计[J].武汉理工大学学报(交通科学与工程版),2003,27(4):440-442. 被引量:10
  • 4Deb K. Multi-objective optimization using evolutionary algorithms. Chichester: John Wiley & Sons, Ltd., 2001. 490 被引量:1
  • 5Coello C A C. A comprehensive survey of evolution ary-based multiobjective optimization techniques. Knowledge and Information Systems, 1999,1(3);269~308 被引量:1
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅰ. IEEE Transactions on Evolutionary Computation, 2002,6(2):182~197 被引量:1

二级参考文献5

共引文献9

同被引文献14

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部