期刊文献+

堤与坝管涌发生的机理及人工智能预测与评定 被引量:20

Mechanism model and artificial intelligence method for prediction and judgment of piping occurring in embankment
下载PDF
导出
摘要 分析了管涌发生的过程和影响管涌发生的因素,提出了一种预测判定管涌发生可能性的机理模型.根据机理模型从影响堤防和土石坝管涌发生的诸多复杂因素中选出既便于测量、建立观测又对管涌发生影响显著的几种因素作为系统输入,把理论机理模型和改进的BP人工神经网络模型相结合,建立预测判定堤防和土石坝中管涌发生的人工智能方法,对管涌发生的可能性因子进行了预测.并通过数据库功能,在应用中不断增加训练样本的规模,使神经网络能够学习到更全面的知识.预测结果的精度较高,表明该方法是可行的. A hybrid model to predict and judge seepage piping occurring was presented by combining the mechanism model and the neural network model. A set of factors, corresponding with the reliable data which had significant effects on the judgment of seepage piping occurring and easy to observe and measure, were filtrated based on the mechanism model from a great number of complex and disorderly observed engineering data. This data as the effective parameters were applied into a modified BP neural network scheme to analyze the characteristics of the seepage piping occurring. The modified BP neural network model combined with a database system was designed as an artificial intelligent method to predict and judge the seepage piping occurring in embankments. The developed neural network model was applied to some practical embankments for judging and forecasting of the possibility of seepage piping failure using the collected data from a number of reservoirs and embankments. The results show that the proposed method is effective.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第7期902-908,共7页 Journal of Zhejiang University:Engineering Science
基金 教育部博士点基金资助项目(A50221).
关键词 堤坝 管涌 机理模型 人工神经网络 Backpropagation Database systems Neural networks Seepage Soils
  • 相关文献

参考文献14

  • 1太沙基·泼克 蒋彭年译.工程实用土力学[M].北京:水利电力出版社,1960.. 被引量:2
  • 2刘杰著..土的渗透稳定与渗流控制[M].北京:水利电力出版社,1992:204.
  • 3杨桂芳,姚长宏.长江干堤管涌研究现状及其发展趋势[J].江西地质,2001,15(1):50-52. 被引量:5
  • 4陈建生,李兴文,赵维炳.堤防管涌产生集中渗漏通道机理与探测方法研究[J].水利学报,2000,31(9):48-54. 被引量:75
  • 5JACOB R A. Increased rate of ccnvergence through learning rate adaptation [J]. Neural Networks, 1988,1:295-308. 被引量:1
  • 6阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.
  • 7水利部水利水电规划设计总院.GB50286-98.堤防工程设计规范[S].北京:中国计划出版社,1998.. 被引量:1
  • 8大卫登柯夫.水工建筑物中土滤层的应用[J].水利水运科技情报,1977,2:23-29. 被引量:1
  • 9RIEDMILLER M, BRAUN H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm [R]. Karlsruhe: University of Karlsruhe, 1992. 被引量:1
  • 10MOLLER M F. A scaled conjugate gradient algorithm for fast supervised learning [J]. Neural Networks,1993,6 (4): 525- 533. 被引量:1

二级参考文献7

共引文献79

同被引文献207

引证文献20

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部