期刊文献+

相伴于非散度型椭圆算子的Riesz变换的L^p有界性

The L^p Boundedness of Generalized Riesz Transform Associated with Nondivergent Elliptic Operators with Coefficients
原文传递
导出
摘要 本文利用小波方法在一般阶的非散度椭圆算子的系数BMO模非常小的情形下,证明了广义 Riesz变换的 L^p(2≤p<+∞)有界性。 In this paper, we consider the L^p boundedness of generalized Riesz transform associated with nondivergent elliptic operators, and solve by means of wavelets the probelm about the L^p (2≤p<∞) boundedness of Riesz transform under the condition that its BMO norm of coefficients is small enough.
作者 许明
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第4期657-670,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(G10371134) 浙江省自然科学基金(RC97017)
关键词 RIESZ变换 非散度 椭圆算子 Riesz transform Nondivergence Elliptic operators
  • 相关文献

参考文献12

  • 1Auscher P., Hofmann S., Lacey M., McIntosh A. and Tchamitchian P., The solution of the kato square root problem for second order elliptic operators on Rn, Annals of Math., 2002, 156: 633-654. 被引量:1
  • 2Auscher P., Hofmann S., Lacey M. etc., La solution des conjectures de Kato, C. R. Acad. Sci. Paris Ser. I Math. 2001, 332(7): 601-606. 被引量:1
  • 3Auscher P., Tchamitchian P., Square root problem for divergence operators and related topics, Asterisque,249, Soc. Math. France, 1998. 被引量:1
  • 4David G., Journe J. L., A boundedness criterion for generalized Calderon-Zygmund operators, Ann. of Math.,1984, 120: 371-397. 被引量:1
  • 5Coifman C., Deng D. G., Meyer Y., Domaine de la racine carree de certains operateurs differentials accretifs,Ann. Inst. Fourier, 1983, 33: 123-134. 被引量:1
  • 6Duong X. T., Simonett G., H∞ calculus for elliptic operators with nonsmooth coefficients, Differential and Integral Equations, 1997, 10(2): 201-217. 被引量:1
  • 7Duong X. T., Yan L. X., L2 Boundedness of Riesz transform associated with non-divergence operators with small BMO coefficients, to appear. 被引量:1
  • 8Meyer Y., Ondelettes et operateurs, Ⅰ. Ⅱ, Hermann, 1990, 1991. 被引量:1
  • 9Angeletti J., Mazet S., Tchamitchian P., Analysis of second elliptic operators without boundary conditions and with VMO or Holder coefficients, in Multiscale wavelets methods for partial differential equations (Dahmen,Kurdila and Oswald, ed.), Wavelets and its Applications, 1997, 6: 495-539. 被引量:1
  • 10Deng D. G., Yan L. X., Yang Q. X., Blocking analysis and T(1) theorem, Sci. in China, Ser A, 1998, 41:801-808. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部