摘要
本文利用小波方法在一般阶的非散度椭圆算子的系数BMO模非常小的情形下,证明了广义 Riesz变换的 L^p(2≤p<+∞)有界性。
In this paper, we consider the L^p boundedness of generalized Riesz transform
associated with nondivergent elliptic operators, and solve by means of wavelets the
probelm about the L^p (2≤p<∞) boundedness of Riesz transform under the condition
that its BMO norm of coefficients is small enough.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第4期657-670,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(G10371134)
浙江省自然科学基金(RC97017)