期刊文献+

5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应 被引量:103

Promotion of Photosynthesis by 5-Aminolevulinic Acid(ALA)during and after Chilling Stress in Melon Seedlings Grown under Low Light Condition
下载PDF
导出
摘要 5 -氨基乙酰丙酸 (ALA) 10mg·L-1处理能够明显提高弱光下生长的甜瓜幼苗叶片净光合速率 (Pn) ,而低温胁迫明显降低甜瓜幼苗叶片光合能力。经ALA处理过的甜瓜幼苗光合表观量子效率、羧化效率、气孔开度、叶片叶绿素 (特别是叶绿素b)和可溶性糖含量均显著增加。在ALA处理 3d之后 ,将幼苗转移到 8℃低温条件下 4h ,对照叶片光合能力基本丧失 ,而ALA处理叶片仍能维持一定的光合能力 ,并在 2 0h内基本恢复至对照水平。若幼苗在低温下处理 6h ,对照植株完全死亡 ,而ALA预处理植株仅出现少量伤害症状。本研究结果表明 。 Irrigation with exogenous 5 aminolevulinic acid(ALA)significantly promoted leaf net photosynthetic rate(Pn)of melon( Cucumis melo L.'Ximiya 1') seedlings grown under low light irradiation,as well as the plants treated by 8℃ chilling stress.The leaves of the plants treated with 10 mg·L -1 ALA solutions showed higher apparent quantum yield(AQY),carboxylation efficiency(CE),chlorophyll (especially chlorophyll b)content,dark respiration and bigger stomata aperture but lower respiration under light.Furthermore,after seedlings were transferred to 8℃ chilling for 4 hours and then recovered at 25-30℃ for 2 hours,the photosynthesis of the control leaves was only 12%-18% of that before chilling,while that in the ALA pretreated leaf was 22%-38%,which would further recovered in 20 hours to 76%-101% of the control before chilling treatment.If the seedlings were chilled for 6 hours,the control plants all died while the ALA pretreated ones only showed a few injury symptoms in the leaf margin.The analysis also showed that the soluble sugar content of leaves in ALA pretreated plants was very significantly higher than that of control,which might be partly responsible for the higher chilling tolerance.The evidence presented here suggested that ALA treatment might promote low light tolerance and chilling tolerance of plants.
出处 《园艺学报》 CAS CSCD 北大核心 2004年第3期321-326,共6页 Acta Horticulturae Sinica
基金 国家教育部出国留学人员基金资助项目 (G2 0 0 2 14 )
关键词 5-氨基乙酰丙酸 低温胁迫 弱光胁迫 甜瓜 光合作用 抗逆性 Aminolevulinic acid(ALA) Chilling Low light Melon Photosynthesis Stress tolerance
  • 相关文献

参考文献17

  • 1von Wettstein D;Gough S;Kananagara C G.Chlorophyll biosynthesis[J],1995. 被引量:1
  • 2Kumar A M;Chaturvedi S;Soll D.Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana[J],1999. 被引量:1
  • 3Hotta Y;Tanaka T;Takaoka H.New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth,1997. 被引量:1
  • 4Hotta Y;Tanaka T;Bingshan L.Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid[J],1998. 被引量:1
  • 5Watanabe K;Tanaka T;Hotta Y.Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid[J],2000. 被引量:1
  • 6Bindu R C;Vivekanandan M.Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation[J],1998. 被引量:1
  • 7汪良驹,姜卫兵,章镇,姚泉洪,松井弘之,小原均.5-氨基乙酰丙酸的生物合成和生理活性及其在农业中的潜在应用[J].植物生理学通讯,2003,39(3):185-192. 被引量:162
  • 8许大全.叶片光合速率的测定,1999. 被引量:1
  • 9Arnon D I.Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris[J],1949. 被引量:1
  • 10西北农业大学.基础植物生物化学实验指导,1986. 被引量:1

二级参考文献63

  • 1Sasaki K, Tanaka T, Nishizawa Y et al. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl Microbiol Biotech, 1990,32:727 - 731. 被引量:1
  • 2Huang LQ, Bonner BA, Casterlfranco PA. Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. Ⅱ.Regulation of ALA-synthesizing capacity by phytochrome. Plant Physiol, 1989,90:1003 - 1008. 被引量:1
  • 3Huang LQ, Castelfranco PA. A re-examination of 5-aminolevulinic acid synthesis by isolated intact developing chloroplasts: The O2 requirement in the light. Plant Sci, 1988,54 : 185 - 192. 被引量:1
  • 4Wang WY, Huang DD, Stachon D et al. Purification. characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol, 1984,74:569 - 575. 被引量:1
  • 5Masuda T, Ohta H, Shioi Y et al. Light regulation of 5-aminolevulinic acid-synthesis system in Cucumis sativus: light stimulates activity of glutamyl-tRNA reductase during greening. Plant Physiol Biochem, 1996,34:11 - 16. 被引量:1
  • 6Mayer S, Beale S. Light regulation of δ-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol,1990,94:1365 - 1375. 被引量:1
  • 7Oteiza PI, Bechara EJH. 5-aminolevulinic acid induces lipid peroxidation in cardiolipin-rich liposomes. Arch Biochem Biophys,1993 ,305 : 282 -287. 被引量:1
  • 8Chakraborty N, Tripathy BC. Involvement of sing, let oxygen in 5-aminolevulinic acid-induced photedynamic damage of cucumber(Cucumis sativus L. ) chloroplasts. Plant Physiol, 1992,98:7 -11. 被引量:1
  • 9Haertel H, Haseloff RF, Walter G et al. Photoinduced damage in leaf segments of wheat ( Triticum aestivum L. ) and lettuce ( Lactuca sativa L. ) treated with 5-aminolevulinic acid. Ⅱ. Characterization of photodynamic damage by means of delayed chlorophyll fluorescence and P700 photooxidation. J Plant Physiol. 1993.142:237 - 243. 被引量:1
  • 10Haertel H, Walter G, Hanke T. Photoinduced damage in leaf segments of wheat ( Triticum aestivum L. ) and lettuce ( Lactuca sativa L. ) treated with 5-aminolevulinic acid. I. Effect on structural components of the photosynthetic apparatus. J Plant Physiol,1993,142:230 -236. 被引量:1

共引文献161

同被引文献1179

引证文献103

二级引证文献831

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部