期刊文献+

基于粗糙集和模糊聚类的超谱波段约简 被引量:1

Hyperspectral Band Reduction Based on Rough Sets and Fuzzy C-Means Clustering
下载PDF
导出
摘要 由于超光谱图像数据量大,维数高给分类识别处理带来不便,该文提出一种可行有效的波段约简方法.通过FCM聚类将原始波段划分为若干等价波段组,然后根据最大隶属度原则只保留每组中具有代表性的波段,达到维数减小的目的。其中,模糊聚类中相似度的定义是基于超谱相邻波段间的相关性,利用粗糙集理论中的处理属性依赖性的方法合理表达出来。实验表明,这一方法既有效地缩减了高维数据,又尽可能少地损失有用信息,保持了原始波段的分类能力。 A method of hyperspectral band reduction based on Rough Sets (RS) and Fuzzy C-Means (FCM) clustering is proposed, which consists of the following two steps. First, Fuzzy C-Means clustering algorithm is used to classify the original bands into equivalent band groups, which employs the concept of attribute dependency defined in RS to define the distance between a group and the cluster center, viz. the correlatives of adjacent bands. Then the data is reduced by selecting the only one from each group with maximum grade of fuzzy membership. With this approach, great dimension of band is decreased while preserving much wanted information. Simulation results prove the effectiveness of this approach.
出处 《电子与信息学报》 EI CSCD 北大核心 2004年第4期619-624,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(69904004) 教育部跨世纪优秀人才培养计划 高等学校骨干教师资助计划资助课题
关键词 粗糙集 模糊聚类 高维数据 超谱波段约简 超光谱遥感 Hyperspectral remote sensing, Rough Sets(RS), Fuzzy C-Means(FCM) clustering, Band reduction
  • 相关文献

参考文献16

  • 1G.P. Abousleman, et al.. Hyperspectral image compression using entropy-constrained predictive trellis coded quantization. IEEE Trans. on Image Processing, 1997, IP-6(4): 566-573. 被引量:1
  • 2Ryan M J, Arnold J F. The lossless compression of AVIRIS images by vector quantization. IEEE Trans. on Geoscience and Remote Sensing, 1997, GRS-35(3): 546-550. 被引量:1
  • 3Jimenez L O, Landgrebe D. A supervised classification in high-dimensional space: geometrical,statistical, and asymptotical properties of multivariate data. IEEE Trans. on System, Man, and Cybernetics-Part C: Applications and Reviews, 1998, SMC-C-28(1): 39 被引量:1
  • 4Jia Xiuping, Richards J A. Segmented principal componemts transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. on Geoscience and Remote Sensing, 1999, GRS-37(1): 538-542. 被引量:1
  • 5Zhang Ye, Desai M D, Zhang Junping, et al.. Adaptive subspace decomposition for hyperspectral data dimensionality reduction. International Conference on Image Processing (ICIP99'), Kobe,Japan, 1999: 326-329. 被引量:1
  • 6Tu Te-Ming, Chen Chin-Hsing. A fast two stage classification method for high dimensional remote sensing data. IEEE Trans. on Geoscience and Remote Sensing, 1998, GRS-36(1): 182-191. 被引量:1
  • 7Morgan J T, Henneguelle A, Crawford M M, et al.. Best bases Bayesian hierarchical classifier for hyperspectral data analysis. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto,Canada, 2002 IEEE International, 2002, Vol.3: 1434-1437. 被引量:1
  • 8Esposito P G, Bartoloni A. An application of genetic algorithms to the geometric correction of HypSEO hyperspectral data. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto,Canada, 2002 IEEE International, 2002, Vol.6: 3507-3509. 被引量:1
  • 9Kaewpijit S, Le Moigne J, E1-Ghazawi T. A wavelet-based PCA reduction for hyperspectral imagery. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto, Canada, 2002 IEEE International, 2002, Vol.5: 2581-2583. 被引量:1
  • 10Hsu Pai-Hui, Tseng Yi-Hsing. Feature extraction of hyperspectral data using the best wavelet packet basis. Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto, Canada, 2002 IEEE International, 2002, Vol.3: 1667-1669. 被引量:1

二级参考文献3

共引文献10

同被引文献11

  • 1刘岩,岳应娟,李言俊,张科.基于粗糙集的图像聚类分割方法研究[J].红外与激光工程,2004,33(3):300-302. 被引量:10
  • 2John S Boreczky,Lawrence A Rowe.Comparison of video shot boundary detection techniques[A].In:SPIE Conference of Storage & Retrieval for Image & Video Databases[C],San Jose,California,USA,1996:170-179. 被引量:1
  • 3Gargi U,Kasturi R,Strayer S H.Performance characterization of video-shot-change detection methods[J].IEEE Transactions on Circuits and Systems for Video Technology,2000,10(1):1 - 13. 被引量:1
  • 4Ford R M,Robson C,Temple D,et al.Metrics for shot boundary detection in digital video sequences[J].Multimedia System,2000,8(1):37 -46. 被引量:1
  • 5Pawlak Z.Rough Set[J].International Journal of Computer and Information Science,1982,11(5):341 -356. 被引量:1
  • 6Pawlak Z.Vagueness and uncertainty:a rough set perspective[J].International Journal of Computational Intelligence,1995,11 (2):227 - 232. 被引量:1
  • 7Wang Guo-yin,Zhao Jun,An Jiu-jiang,et al.Theoretical study on attribute reduction of rough set theory:comparison of algebra and information views[A].In:Proceedings of the Third IEEE International Conference on Cognitive Informatics[C],Victoria,British Columbia,Canada,2004:148 - 155. 被引量:1
  • 8Gao Xin-bo,Tang Xiao-ou.Unsupervised model-free news video segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12 (9):765 - 776. 被引量:1
  • 9Han Bing,Gao Xin-bo,Ji Hong-bing.An efficient algorithm of gradual transition for shot boundary segmentation[A].In:SPIE Conference on Multispectral Image Processing and Pattern Recognition[C],Beijing,China,2003:956 - 961. 被引量:1
  • 10Bezedek J C.Clustering validity with fuzzy sets[J].Mathematical Biology,1974,(1):57 -71. 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部