摘要
Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude below 34m, at the bottom of the Carboniferous. The Donghe sandstone reservoir consists of littoral facies deposited quartz sandstones of the transgressive system tract, overlapping northward and pinching out. Exploration and development confirms that water-oil contact tilts from the southeast to the northwest with a drop height of nearly 80m. The reservoir, under the control of both the stratigraphic overlap pinch-out and tectonism, is a typical subtle reservoir. The Donghe sandstone reservoir in Hade 4 oilfield also has the feature of a large oil-bearing area (over 130 km2 proved), a small thickness (average efficient thickness below 6m) and a low abundance (below 50 × 104t/km2). Moreover, above the target layer developed a set of igneous rocks with an uneven thickness in the Permian formation, thus causing a great difficulty in research of the velocity field. Considering these features, an combination mode of exploration and development is adopted, namely by way of whole deployment, step-by-step enforcement and rolling development with key problems to be tackled, in order to further deepen the understanding and enlarge the fruits of exploration and development. The paper technically focuses its study on the following four aspects concerning problem tackling. First, to strengthen the collecting, processing and explanation of seismic data, improve the resolution, accurately recognize the pinch-out line of the Donghe sandstone reservoir by combining the drilling materials in order to make sure its distribution law; second, to strengthen the research on velocity field, improve the accuracy of variable speed mapping, make corrections by the data from newly- drilled key wells and, as a result, the precision of tectonic description is greatly improved; third, to strengthen the research on sequence strati
Hade 4 oilfield is located on the Hadexun tectonic belt north of the Manjiaer depression in the Tarim basin, whose main target layer is the Donghe sandstone reservoir, with a burial depth over 5,000m and an amplitude below 34m, at the bottom of the Carboniferous. The Donghe sandstone reservoir consists of littoral facies deposited quartz sandstones of the transgressive system tract, overlapping northward and pinching out. Exploration and development confirms that water-oil contact tilts from the southeast to the northwest with a drop height of nearly 80m. The reservoir, under the control of both the stratigraphic overlap pinch-out and tectonism, is a typical subtle reservoir. The Donghe sandstone reservoir in Hade 4 oilfield also has the feature of a large oil-bearing area (over 130 km2 proved), a small thickness (average efficient thickness below 6m) and a low abundance (below 50 × 104t/km2). Moreover, above the target layer developed a set of igneous rocks with an uneven thickness in the Permian formation, thus causing a great difficulty in research of the velocity field. Considering these features, an combination mode of exploration and development is adopted, namely by way of whole deployment, step-by-step enforcement and rolling development with key problems to be tackled, in order to further deepen the understanding and enlarge the fruits of exploration and development. The paper technically focuses its study on the following four aspects concerning problem tackling. First, to strengthen the collecting, processing and explanation of seismic data, improve the resolution, accurately recognize the pinch-out line of the Donghe sandstone reservoir by combining the drilling materials in order to make sure its distribution law; second, to strengthen the research on velocity field, improve the accuracy of variable speed mapping, make corrections by the data from newly- drilled key wells and, as a result, the precision of tectonic description is greatly improved; third, to strengthen the research on sequence strati