摘要
分别推导出了点声源声场基于算术平均声压的声强计算误差公式和基于几何平均声压的声强计算误差公式 ,并进行了计算机仿真 ,且对这两种误差进行了对比分析 ,在高频区由几何平均声压而得到的计算声强的误差小于由算术平均而得到的计算声强的误差 ,几何平均声强具有比算术平均声强可测范围宽的特性。当声波是空间位置和时间的周期函数时 ,平面波误差项永远是一负偏差项。近场误差项不影响曲线形状 ,只是使曲线进行上下平行移动 ,随着 Δr/ r的增大 ,曲线向上移动 ,曲线和横轴的交点 (误差为零的点 )向右移动。
Two error calculation methods of point sound source sound field based on arithmetic average sound pressure and geometry average sound pressure are calculated respectively, followed by the simulation as well as the analysis of the two errors. Results show that in high frequency area, the error to calculate the sound intensity obtained by arithmetic average sound pressure is less than the error calculated by geometry average method, and compared the arithmetic sound intensity with the geometric sound intensity, the former has the feature of wider measurable range. The plane wave error is always negative windage, when the sound wave is the cycle function of space and time. And near field windage does not has influence on the shape of curves, but only makes the curve move up and down. The curve moves upward and the intersection point with horizontal axis moves toward right with the increase of Δr/r.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2004年第2期208-211,共4页
Chinese Journal of Scientific Instrument
基金
国家自然科学基金资助项目 (5 0 2 75 0 44 )
安徽省自然科学基金资助课题 (0 0 0 47418)
黑龙江省骨干教师资助课题 (10 5 2 G0 3 6)
关键词
声强测量
误差分析
算术平均声压
几何平均声压
点声源声场
Sound intensity measurement Error analyses Arithmetic average sound pressure Geometry average sound Pressure