摘要
研究时滞Li啨nard方程¨x+f1(x)·x+f2(x(t-τ))·x(t-τ)+g(x(t-τ))=e(t)的解的有界性,其中f1,f2均连续可微,g(t)可微,e(t)为连续函数,当f2=0时,上方程就化为文献[9]中研究的方程¨x+f(x)·x+g(x(t-τ))=e(t).结果推广了文献[9]中的结论.
This paper aims to investigate the boundeness of retarded Liénard equationx+f_1(x)·x+f_2(x(t -τ))·x(t -τ)+g(x(t -τ))=e(t)Where f_1,f_2 are continuous and differentiablee g(x) is differentiable, e(t) is continuous.When f_2=0,above equation could be reduced to the equation of .¨x+f(x)·x+g(x(t -τ))=e(t) results generalized the theorem of .
出处
《安徽大学学报(自然科学版)》
CAS
2004年第3期6-9,共4页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(10241005)
安徽省教育厅基金资助项目(2003KJ005zd)