期刊文献+

无限大板中矩形裂纹I型应力强度因子的计算——有限部积分边界元法 被引量:1

The Calculation of Stress Intensity Factor of Rectangular Crack Embedded in a Infinite Plane
下载PDF
导出
摘要 建立以裂纹表面位移为未知函数的超奇异积分方程,利用有限部积分原理和边界元法来求解该方程.运用该方法计算出矩形裂纹的I型应力强度因子. In this paper a hypersingular integral equation with the unknown displacement is developed. To solve the equation, the principle of finite-part integral and boundary element method is used. By using the method mentioned above, the stress intensity factors of rectangle crack are calculated.
出处 《华东交通大学学报》 2004年第2期44-46,共3页 Journal of East China Jiaotong University
关键词 超奇异积分方程 有限部积分原理 边界元法 矩形裂纹 Ⅰ型应力强度因子 固体力学 断裂理论 hypersingular integral equation the principle of finite-part integral boundary element method rectangular crack the stress intensity factor
  • 相关文献

参考文献10

  • 1Ioakimidis NI. Application of finite-part integrals to the singular integral equations of crack problems in plane and threedimensional elasticity. Acta. Mechanica, 1982,45:31-47. 被引量:1
  • 2Sohn GH. and Hong CS. Application of singular integral equations to embedded planar crack problems in finite body.Boundary Element2 (edited by A. C. Brebbia and G.Maier), 1985, 8-57-8-67. 被引量:1
  • 3Martin PA. and Rizzo FJ. On boundary integral equations for crack problems. Proceedings of the Royal Society London,1989, (A- 421 ) :341 - 355. 被引量:1
  • 4Williams ML. On the stress distribution atthe base of a stationary crack. J. Appl. Mech, 1957 , 24 :109. 被引量:1
  • 5范天佑编著..断裂力学基础[M].南京:江苏科学技术出版社,1978:510.
  • 6Murakami Y. and nemat-Nassers S. Groewth and stability of interacting surface flaws of arbitrary shape. Engng. Fract.Mech., 1983,17:193 - 210. 被引量:1
  • 7Isida M. etc., Int. J. Fract., 1991, 52:79. 被引量:1
  • 8石田诚.三次元き裂问题の高精度新解析法[A]..日本机械学会论文集[C].A编[C].,1993.1270-1278. 被引量:1
  • 9秦太验..三维断裂力学的有限部积分-边界元法研究[D].上海交通大学,1993:
  • 10陈梦成..两相材料界面附近(含界面)三维断裂力学问题的超奇异积分方程方法[D].上海交通大学,1997:

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部