期刊文献+

基于对极几何约束的景象匹配研究 被引量:22

Study on Scene Matching Based on Epipolar Geometric Constraint
下载PDF
导出
摘要 提出了一种图像配准方法来解决实时图与基准图空间不对准问题。它是利用随机采样算法估计基本矩阵 ,恢复实时图与基准图之间对极几何 ,然后基于对极几何约束 ,剔除误匹配点 ,得到精确匹配控制点 ,计算出全局仿射变换 ,从而对实时图进行校正。该方法的特点是精确、稳定和全自动。采用真实图像实验结果表明 ,该方法是行之有效的。 Scene matching is very important for end-control-and-guide precision. An image registration method is presented to solve the displacement between real time and reference images. The method uses a random sampling algorithm to estimate the fundamental matrix and to recover the epipolar geometry in the image pair. A correlation technique is used to find an initial set of matches and a robust technique is used to discard false matches in this set, so that accurate matches are eventually found by using the recovered epipolar geometry. The global affine transformation is obtained from final set of points that aligns correctly the image pair. The method has characteristics of the accuracy and stability of estimation, and the automated solution. Experimental results with real images show that the method is effective.
作者 杨敏 沈春林
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2004年第2期235-239,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 景象匹配 图像配准 对极几何 基本矩阵 鲁棒估计 随机采样算法 武器系统 制导 scene matching image registration epipolar geometry fundamental matrix robust estimation random sampling algorithm
  • 相关文献

参考文献12

  • 1孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985.. 被引量:48
  • 2Brown L G. A survey of image registration tech-niques[J]. ACM Computing Surveys, 1992, 24(4):325~376. 被引量:1
  • 3Thevenaz P, Ruttimann U E, Unser M. A pyramid approach to subpixel registration based on intensity[J]. IEEE Trans Image Processing, 1998,7:27~41. 被引量:1
  • 4David M M, Netanyahu N S, Moigne J L. Efficient algorithm for robust feature matching[J]. Pattern Recognition, 1999, 32: 17~38. 被引量:1
  • 5Dai X L, Siamak K. Development of a feature-based approach to automated image registration for multitemporal and multisensor remotely sensed imagery[A]. Proceedings of IEEE International Geoscience and Remoth Sensing Symposium[C]. 1997.243~245. 被引量:1
  • 6Bergen J R, Anandan P, Hanna K, et al. Hierar-chical model based motion estimation[A]. Proc of 2nd European Conf on Computer Vision[C].1992.237~252. 被引量:1
  • 7Heeger D J, Jepson A D. Subspace methods for recovering rigid motion: algorithm and implementation[J]. International Journal of Computer Vision, 1992,7:95~117. 被引量:1
  • 8Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge University Press, 2000.219~243. 被引量:1
  • 9Harris C, Stephens M. A combined corner and edge detector[A]. Proceedings of Alvey Vision Conference[C]. 1988. 189~192. 被引量:1
  • 10Zhang Z Y. Determining the epipolar geometry and its uncertainty: a review[J]. International Journal Computer Vision, 1998, 27(2):161~198. 被引量:1

共引文献47

同被引文献182

引证文献22

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部