期刊文献+

一类二阶退化半线性椭圆型方程边值问题的适定性及解的正则性 被引量:4

WELL-POSEDNESS AND REGULARITY OF BOUNDARY VAULE PROBLEMS FOR A CLASS OF SECOND ORDER DEGENERATE SEMILINEAR ELLIPTIC EQUATIONS
下载PDF
导出
摘要 本文考虑一类二阶退化半线性椭圆型方程边值问题.由椭圆正则化方法建立能量不等式,利用紧性推理,Banach—Saks定理,弱解与强解一致性,解常微分方程,椭圆型方程正则性定理,迭代方法.极值原理和Fredholm—Riesz-Schauder理论,可得相应线性问题适定性及解的高阶正则性;再由Moser引理和Banach不动点定理可得半线性问题解的存在性.这类问题与几何中无穷小等距形变刚性问题密切相关,其高阶正则性解的存在性对几何应用尤为重要. The present paper concerns with the following semilinear degenerate elliptic equation yΔu + aux + buy + cu = ε0F(x,y,u,ux,uy), the author investigates the boundary value problems in a bounded periodic domain Ω, which is homeomorphic to the cylindrical surface. The well-posedness and regularity of the corresponding linear problems are dealed with by the elliptic regularization method. Based on the results above, the author obtains some results on the existence of solution to the above semilinear problems by Moser's lemma and Banach fixed point theorem. Such problems are very closely related to the rigidity problems arising from infinitesimal isometric deformation. And the regularity of solutions to such problems plays an Important role in the study of geometry problems.
作者 何跃
出处 《数学年刊(A辑)》 CSCD 北大核心 2004年第2期225-242,共18页 Chinese Annals of Mathematics
关键词 退化半线性椭圆型方程 适定性 正则性 先验估计 Degenerate semilinear elliptic equation, Well-posedness, Regularity, Priori estimate
  • 相关文献

参考文献21

  • 1Tricomi,F.,Sull equazioni alle derivate parziali di secondo ordine,di tipo misto [J],Rend.Reale Accad.Lincei.,14:5(1923),134-247. 被引量:1
  • 2Keldys,M.V.,On cenrtain cases of degeneration of equation of elliptic type on theboundary of a domain [J],Dokl.Akad.Nauk SSSR,77(1951),181-183; English transl.,Amer.Math.Soc.Transl. 被引量:1
  • 3Kohn,J.& Nirenberg,L.,Degenerate elliptic-parabolic equations of second order [J],Comm.Pure Appl.Math.,20(1967),797-872. 被引量:1
  • 4Oleinik,O.A.,On the smoothness of solution of degenerate elliptic and parabolic equations [J],Dokl.Akad.Nauk SSSR,163(1965),577-580; Soviet Math.Dokl.,6(1965),972-975. 被引量:1
  • 5Oleinik,O.A.,Linear equations of second order with nonnegative characteristic form [J],Mat.Sb.,69:111(1966),111-140; English transl.,Amer.Math.Soc.Transl.,65:2(1967),167-199. 被引量:1
  • 6Radkevic,E.V.,The second boundary value problem for a second order equationwith non-negative characteristic form [J],Vestnik Moskov.Univ.ser.I Mat.Meh.,22:4(1967),3-11(Russian). 被引量:1
  • 7Caffarelli,L.,Nirenberg,L.& Spruck,J.,The Dirichlet problem for the degenerateMonge-Ampere equation [J],Revista Matematica Iberoamericana,2:1(1986),19-27. 被引量:1
  • 8Lin Fanghua,On the Dirichlet problem for minimal graphs in hyperbolic space [J],Invent.Math.,96(1989),592-612. 被引量:1
  • 9Brezis,H.& Lions,P.L.,Boundary regularity for some nonlinear elliptic degenerateequation [J],Comm.Math.Phys.,70:2(1979),181-185. 被引量:1
  • 10Fabes,E.B.,Kenig,C.E.& Jerison,D.,Boundary behavior of soluation to degenerateelliptic equation [J],Ann.Inst.Fourier,32:3(1982),152-182; Comm.PDE,7:1(1982),77-116; Conference on harmonic analysis in hornor of A.Zygmund,Wadsworth helmount California,(1 被引量:1

同被引文献31

  • 1雷雨田.一类泛函极小元的H^2收敛性[J].南京师大学报(自然科学版),2004,27(3):9-11. 被引量:1
  • 2Lin F H.On the Dirichlet problem for minimal graphs in hyperbolic space[J].Invent Math,1989,96:592-612. 被引量:1
  • 3Daskalopoulos P,Hamilton R.Regularity of the free boundary for the n-dimensional porous medium equation[J].J Amer Math Soc,1998,11:899-965. 被引量:1
  • 4Daskalopoulos P,Hamilton R,Lee K.All time C∞-Regularity of the interface in degenerated diffusion:a geometric approach[J].Duke Math J,2001,108:295-327. 被引量:1
  • 5Hong J X.Recent developments of realization of surfaces in R^3[J].Studies in Advanced Mathematics,2001,20:47-62. 被引量:1
  • 6Oleǐnik O A,Radkevic E V.Second Order Equations with Nonnegative Characteristic Form[M].New York:American Mathematical Society,Rhode Island and Plenum Press,1973. 被引量:1
  • 7Chen Z C.The Keldys-Fichera boundary value problem for a class of nonlinear degenerate elliptic equations[J].Acta Math Sinica,1993,9(2):203-211. 被引量:1
  • 8Oleinik O.A.,and Radkevic E.V.,Second Order Equations with Nonnegative Characteristic Form[M],American Mathematical Society,New York:Rhode Island and Plenum Press,1973 (English ed.) 被引量:1
  • 9Lin F.H.,On the Dirichlet problem for minimal graphs in hyperbolic space[J],Invent.Math.,1989,96:592-612. 被引量:1
  • 10Yau S.T.,Private notes on isometric imbeddings[J],Asian J.Math.,2000,4(1):235-278. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部