摘要
提出了一种新的解整数可分离凹规划问题的分支定界算法 ,并证明了其收敛性 .最后用一个数值例子说明该算法是有效的 .
In this paper, a new branch and its bound algorithm for solving integer separable concave programming problems is proposed, and the convergence of the algorithm is proved. In the algorithm, branch and bound method is used, and integer rectangle partition technique and the linear approximate of variable concave functions is applied.
出处
《宁夏大学学报(自然科学版)》
CAS
2004年第1期23-25,共3页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目 (199710 6 5 )
关键词
整数可分离凹规划
整体优化
分支定界方法
整矩形剖分
线性逼近
integer separable concave programming
global opti-mization
branch and bound method
integer rectangle partition technique
linear approximate