期刊文献+

模块小波神经网络在工业产品质量控制中的应用 被引量:3

Application of modular wavelet neural networks in industries product quality control
下载PDF
导出
摘要 针对输入空间包含多种类型的数据时,以单一的神经网络为模型,其收敛很困难的问题,提出一种基于模块小波神经网络的建模方法.利用分而治之思想,模块神经网络通过一个门控网络进行分类和协调,可以将一个复杂任务分解成几个简单的子任务,每个子任务由一个局部专家网络学习.与传统的模块网络不同,这里的专家网络是小波网络而不是BP网络.将所提出的网络模型用于热连轧产品质量建模,并与单一的神经网络建模结果进行比较.建模结果表明,模块小波神经网络模型优于单一神经网络模型. When the input space consists of several different classes of input data, it becomes very difficult to converge the network during the training phase. A modular wavelet neural-network is presented to overcome this difficulty. Based on the divide-and-conquer concept, a modular network is capable of dividing a complex task into subtasks, and modeling each subtasks with an expert network. To model such activities, a gating network is used for the classification and allocation of the input data to the corresponding expert network. Different from traditional modular networks, here each expert network is a wavelet network. The performance of such networks in modeling product quality is examined and compared with that of singular networks. Modeling results demonstrate that the proposed method takes a significant improvement over the general singular network model.
出处 《控制与决策》 EI CSCD 北大核心 2004年第3期295-298,共4页 Control and Decision
基金 国家863计划资助项目(863-51-011) 国家自然科学基金资助项目(60274055) 西安交通大学自然科学基金资助项目(0900-5-73024).
关键词 模块小波网络 高维输入 质量模型 热连轧机 Backpropagation Expert systems Hot rolling mills Quality assurance Wavelet transforms
  • 相关文献

参考文献8

  • 1[1]Parlos A, Chong K, Atiya A. Application of recurrent multilayer perceptron in modeling complex process dynamics[J]. IEEE Trans on Neural Networks, 1994,5(2):255-266. 被引量:1
  • 2[2]Chun M S, Yi J J, Moon Y H. Application of neural networks to predict the width variation in a plate mill [J]. J of Materials Processing Technology, 2001, 111(1-3):146-149. 被引量:1
  • 3[3]Liu Z Y, Wang W D, Gao W. Prediction of mechanical properties of hot-rolled C-Mn steels using artificial neural networks [J]. J of Materials Processing Technology, 1996, 57(3-4): 332-336. 被引量:1
  • 4[4]Aistleitner K, Mattersdorfer L G, Haas W, et al.Neural network for identification of roll eccentricity in rolling mills [J]. J of Materials Processing Technology,1996, 60(1-4) :387-392. 被引量:1
  • 5[5]Dukman Lee, Yongsug Lee. Application of neuralnetwork for improving accuracy of roll-force model in hot-rolling mill[J]. Control Engineering Practice ,2002,10(4) :473-478. 被引量:1
  • 6[6]Pican N, Alexandre F. Artificial neural networks for the presetting of a steel temper mill[J]. IEEE Expert,1996, 11(1):22-27. 被引量:1
  • 7[10]Jacobs R A, Jordan M I, Nowlan S J, et al. Adaptive mixtures of local experts [J]. Neural Computation,1991, 3(1):79-87. 被引量:1
  • 8[11]Jacobs R A, Jordan M I, Nowlan, et al. Task decomposition through competition in a modular connectionist architecture: The what and where vision task[J]. Cognitive Science, 1991,15(2) : 219-250. 被引量:1

同被引文献32

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部